Check for
Updates

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

Path Complexity Analysis for Interprocedural Code

Mira Kaniyur, Ana Cavalcante-Studart, Yihan Yang,
Sangeon Park, David Chen, Duy Lam, Lucas Bang
mkaniyur,astudart,yukyang, sangpark,davidchen, tlam,lbang@hmc.com
Harvey Mudd College
Claremont, California, USA

ACM Reference Format:

Mira Kaniyur, Ana Cavalcante-Studart, Yihan Yang,, Sangeon Park, David
Chen, Duy Lam, Lucas Bang. 2024. Path Complexity Analysis for Interpro-
cedural Code. In 2024 IEEE/ACM 46th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion "24), April 14-20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3639478.3643527

1 INTRODUCTION

Symbolic execution’s path explosion is a critical issue in software
testing, quantified by Asymptotic Path Complexity (APC) [3]. APC,
more precise than cyclomatic [6] or NPATH [7] complexities, mea-
sures the effort to cover paths in code analysis [1]. It’s vital for
testing, setting limits on path growth for tools like KLEE [4], focus-
ing previously on intraprocedural code [2, 8]. Our advancement,
APC-IP, extends APC to interprocedural analysis, enhancing scala-
bility and encompassing earlier models.

Contributions. We claim the following research contributions.
(1) APC-IP Formalization: Extension of the theory and algorithms
established for APC to account for interprocedural functions; (2)
Optimization Over All Previous APC Approaches. Replacing theoreti-
cal steps in previous algorithms to improve performance for both
interprocedural and intraprocedural code; (3) APC-IP Implemen-
tation. Implementing APC-IP atop METRINOME, an existing APC
analysis tool; (4) APC-IP Experimental Validation. APC-IP computes
accurate APC for both intraprocedural and interprocedural, and is
the fastest option to process complex source code.

2 PATH COMPLEXITY BACKGROUND

Given a program, P, the APC of P is a function that bounds the
number of execution paths of P as function of execution length. The
execution length is the number of edges traversed in the control
flow graph of P. For instance, if the APC of P is O(n?), then the
number of different execution paths of P grows at most quadrati-
cally as execution length increases. Previous work described how
to compute intraprocedural APC using the combinatorics of fi-
nite automata [1, 2], and more recent work implemented APC for
self-recursive functions using the combinatorics of context free
grammars, called APC-R [8].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-Companion °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0502-1/24/04.

https://doi.org/10.1145/3639478.3643527

404

3 NOVEL APC ALGORITHMS

Three major changes to APC-R produce a computationally viable
APC algorithm for interprocedural functions. The first change is
sufficient to create a correct naive algorithm (NAPC-IP). Two further
optimizations are create a tractable APC-IP.

Naive Interprocedural APC. APC-R assigns a labelled variable
to each node in the function’s control flow graph. Using analytic
combinatorics, a single system of equations is created, which is
solved for a generating function g that captures APC behavior. g
is a rational function whose Taylor expansion is an infinite poly-
nomial encoding the exact execution path count in its coefficients.
Asymptotic analysis of g yields the APC of self-recursive and non-
recursive intraprocedural functions. Applying this approach to
interprocedural code requires the introduction of mutually coupled
systems of equations, one system for each control flow graph of
each function. A naive interprocedural algorithm is then achieved
by carefully relabelling variables for the nodes of the multiple con-
trol flow graphs so as to create one large system of combinatorial
equations, and then using the same analysis as APC-R to compute
APC. This relabeling modification is theoretically sufficient to ex-
tend APC-R’s algorithm to operate on interprocedural programs.
We thus describe APC-R with our labeling modification as NAPC-IP
(naive APC interprocedural). However, empirically, NAPC-IP is in-
efficient and unable to process interprocedural functions with any
significant complexity. For example, processing an interprocedural
MergeSort function took over 2000 seconds (Table 1). As such, we
implement two further changes in the following subsections, one
to the step of solving the systems, and one to the step of analysis
on the generating function g(x), to produce our final APC-IP.
Optimized Elimination of Equations. The first of two major per-
formance issues with NAPC-IP was solving the system of equations.
With multiple graphs or long systems of equations, the function
ELIMINATE, which was left unchanged from APC-R, often stalled,
crashed, or timed out. It solved the system in its entirety by iterat-
ing through the system of equations, eliminating one variable at
a time using standard back-substitution techniques. To eliminate
each variable, it also had to make 2 interior iterations through the
system due to the nature of the systems of equations arising from
the control flow graphs.

Our new method ELIMINATE-OPTIMIZED is designed and opti-
mized to solve systems of equations from control flow graphs of
interprocedural and complex functions. It separates each graph’s
system of equations and solves them independently. It uses multiple
dictionaries for solving and substituting each variable to avoid inte-
rior iterations through the whole system of equations. After solving
each system of equations, it combines these equations into a final
system of equations and solves it. Our ELIMINATE-OPTIMIZED thus
handles complex or interprocedural systems more efficiently, and

https://doi.org/10.1145/3639478.3643527
https://doi.org/10.1145/3639478.3643527
https://doi.org/10.1145/3639478.3643527
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643527&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14-20, 2024, Lisbon, Portugal

arrives at the same result, I', which becomes a generating function
exactly as in APC-R.
GETRGEF: Optimizing the Bounding of the Generating Func-
tion. The second bottleneck step was our old method of asymp-
totically bounding the generating function g(x) using symbolic
calculus. The algorithm has two cases after computing g(x), de-
pending on the roots of the discriminant, the more common of
which needed symbolic calculus to bound g(x). The number of
required computations rapidly increased with function complexity,
sometimes requiring the Taylor series of the generating function up
to 100 terms, which can take more than 1000 seconds to compute.
APC-IP replaces the symbolic asymptotic calculus of APC-R with
the formula forthe General Expansion Theorem for Rational Gen-
erating Functions GETRGF, where the computations are bounded
by the roots of the generating function g’s denominator. Applying
GETRGF(5] to g(x) is enough to compute APC.
General Expansion Theorem for Rational Generating Func-
tions (GETRGF). If g(x) = P(x)/Q(x), where Q(x) = qo(1 —
plx)”l1 (l—pzx)d2 . (l—ptx)df and the numbers (p1, p2, . . ., pr) are
distinct, and if P(x) is a polynomial of degree less than di +da+- - -+d;,
then [x"]g(x) = fi(n)p} + f2(n)p} +- - -+ fi(n) p}, where each fi.(n)
is a polynomial of degree dy. — 1 with leading coefficient

= P(1/py)

(die = 1)'q0 [Tk (1 = pj/ pi) %

We directly implement this algorithm, except when the degree

of our g(x)’s P(x) is greater than the degree of its Q(x), violat-
ing the theorem’s conditions. However, we can represent g(x) as
S(x) + R(x)/Q(x) where the remainder R(x) has a lower degree
than Q(x) and S(x) is a finite polynomial. Since S(x) only affects
the Taylor series expansion of g(x) for small powers of n, we can
replace P(x) with R(x) when finding the asymptotic upper bound
of g(x)’s coefficients to satisfy the theorem conditions. With this
small modification, implementing this theorem can always bound
g(x) asymptotically. Note we calculate the APC directly, rather than
calculating the path complexity and then simplifying to the APC,
as teh symbolic asymptotic calculus of APC-R does.
APC-IP Algorithm Below is the full APC-IP algorithm. As noted,
the first change to relabel the graph nodes is sufficient for NAPC-
IP, but the additional two optimizations make the final APC-IP
computationally viable.

Algorithm 1 APC-IP: ASYMPTOTIC-ANALYSIS OF
INTERPROCEDURAL FUNCTIONS (Program P)

1: Gy,...,Gp < CoNTROL-FLOW-GRAPHS(P) > Change 1 in APC-IP (& NAPC-IP)
2: §=5S,...,Sn <« SystEMS(Gy, . .., Gp)
3: I « ELIMINATE-OPTIMIZED(S) > Change 2 in APC-IP
4: R « roots of the discriminant of T
5: if (R = 0) then > Case 1
6: g(z) =Sowve(I, Ty) /(1 — z)
7: apc = GETRGF(g, R) « upper bound of g > Change 3 in APC-IP
8: else > Case 2
9: r* < minimum positive real root in R

10: apc « (1/r*)"

11: return apc

4 RESULTS

The two changes made with Metrinome produce significant out-
comes. Table 1 shows a sample result of APC-IP compare with
NAPC-IP and APC-R.

405

Mira Kaniyur, Ana Cavalcante-Studart, Yihan Yang,
Sangeon Park, David Chen, Duy Lam, Lucas Bang

APC-IP subsumes APC-R. We see that APC-IP produces APCs
consistent with APC-R on simple and recursive functions while
running faster on more complex ones. The result for the functions
APC-R cannot compute, the interprocedural ones, are shown as ‘-’.
APC-IP outperforms NAPC-IP on complicated functions.
While Both APC-IP and NAPC-IP can handle interprocedural func-
tions, with the optimization on ELIMINATE and the new algorithm
using GETRGF, APC-IP outperforms NAPC-IP. In the case when
APC-IP is slower than NAPC-IP, both is under 1 seconds. But when
NAPC-IP times out in 2000 seconds, APC-IP can produce the APC
in significantly less time. This is expected because ELIMINATE-
OPTIMIZED is better at handling more complicated functions.

Table 1: APC-IP vs. NAPC-IP and APC-R

Method Runtime (sec)

| Function | APC-IP [NAPC-IP [APCR | APC-IP [NAPC-IP | APCR |
Factorial-R 2n/5 2n/5 2n/5 0.20 50.32 50.30
Factorial -1 n/2 n/3 - 0.21 0.29
Palindrome -R | n/2 n/2 nj/2 0.13 0.09 0.09
L.C. Subseq .68(1.31) .68(1.31) | .68(1.31) [3.92 65.92 64.80
Quicksort -I 1.247 1.247 - 0.50 0.27
Quicksort -R | 1.35" 1.357 1.357 0.75 0.39 7.29
Insertion sort | .08(1.35™") .08(1.35") [.08(1.35) | 2.09 8.55 8.63
Merge Sort -I | 1.397 timeout - 19 > 2000
Merge Sort .006(1.42™) .006(1.42™) [.006(1.42™) | 3.27 1410 979
BST -I .0001(n31.21") [timeout 125 > 2000

5 CONCLUSION AND FUTURE WORK

Previous work on APC and Metrinome ignores interprocedural
calls between functions. Renaming the vertices along with our two
optimizations, allows Metrinome to accurately and efficiently com-
pute the APC of interprocedural functions as well as more complex
functions. Future work on APC might extend it to handle functions
containing inter-file calls. This would likely require further compu-
tational optimizations of METRINOME, but would allow METRINOME
to analyze much of industry code, making it a useful tool for soft-
ware developers to analyze their code’s path complexity.

REFERENCES

[1] Lucas Bang, Abdulbaki Aydin, and Tevfik Bultan. 2015. Automatically computing
path complexity of programs. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.).
ACM, 61-72. https://doi.org/10.1145/2786805.2786863

Gabriel Bessler, Josh Cordova, Shaheen Cullen-Baratloo, Sofiane Dissem, Emily
Lu, Sofia Devin, Ibrahim Abughararh, and Lucas Bang. 2021. Metrinome: Path
Complexity Predicts Symbolic Execution Path Explosion. In 43rd IEEE/ACM Inter-
national Conference on Software Engineering: Companion Proceedings, ICSE Com-
panion 2021, Madrid, Spain, May 25-28, 2021. IEEE.

Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
Path Explosion in Constraint-Based Test Generation. In Tools and Algorithms for
the Construction and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 351-366.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation (San Diego, California) (OSDI’08). USENIX Association, USA, 209-224.
Robert L. Graham, Donald E. Knuth, and Oren Patashnik. 1994. Concrete Mathe-
matics: A Foundation for Computer Science (2nd ed.). Addison-Wesley Publishing
Company, USA.

Thomas J. McCabe. 1976. A Complexity Measure. IEEE Trans. Software Eng. 2, 4
(1976), 308-320.

Brian A. Nejmeh. 1988. NPATH: A Measure of Execution Path Complexity and Its
Applications. Commun. ACM 31, 2 (Feb. 1988), 188-200.

Eli Pregerson, Shaheen Cullen-Baratloo, David Chen, Duy Lam, Max Szostak,
and Lucas Bang. 2023. Formalizing Path Explosion for Recursive Functions via
Asymptotic Path Complexity. In 2023 IEEE/ACM 11th International Conference on
Formal Methods in Software Engineering (FormaliSE), Melbourne, Australia, May
14-15, 2023. IEEE.

https://doi.org/10.1145/2786805.2786863

