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ABSTRACT

Software testing techniques like symbolic execution face signi�cant

challenges with path explosion. Asymptotic Path Complexity (APC)

quanti�es this path explosion complexity, but existing APC meth-

ods do not work for interprocedural functions in general. Our new

algorithm, APC-IP, e�ciently computes APC for a wider range of

functions, including interprocedural ones, improving over previous

methods in both speed and scope. We implement APC-IP atop the

existing software Metrinome, and test it against a benchmark of C

functions, comparing it to existing and baseline approaches as well

as comparing it to the path explosion of the symbolic execution

engine Klee. The results show that APC-IP not only aligns with

previous APC values but also excels in performance, scalability, and

handling complex source code. It also provides a complexity predic-

tion of the number of paths explored by Klee, extending the APC

metric’s applicability and surpassing previous implementations.

CCS CONCEPTS

• Software and its engineering→ Software performance; Soft-

ware veri�cation and validation; •Mathematics of computing

→ Generating functions.
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1 INTRODUCTION

Software testing and veri�cation techniques rely on program path

coverage to increase con�dence in software correctness. However,

for automated software testing approaches like symbolic execution,

path explosion is a well-known bottleneck in code analysis [1, 5, 14].

Asymptotic path complexity (APC) is ametric that formalizes the de-

gree of path explosion, thus quantifying the computational di�culty

of achieving path coverage. Previous work [2] has demonstrated

that asymptotic path complexity is a more accurate and re�ned

metric to measure code complexity than other common complexity

metrics such as cyclomatic [16] or NPATH [17] complexity. Further,

it has been shown that asymptotic path complexity (APC) is useful

in the context of automated software testing [3, 19], providing an

upper bound on the growth rate of paths explored by a popular

symbolic execution software such as Klee [6]. In earlier works,

approaches to computing APC only handled intraprocedural analy-

sis, including functions that make no recursive calls or make only

self-recursive calls [3, 19]. In this paper, we extend and optimize

the asymptotic path complexity (APC) metric to measure the com-

plexity of interprocedural programs. We give a new APC algorithm,

APC-IP, able to compute path complexity for interprocedural func-

tions, which subsumes prior approaches and is signi�cantly more

scalable. Our APC-IP is an algorithm that computes the asymptotic

path complexity of intraprocedural and interprocedural code. APC-

IP thus provides a way to quickly predict the di�culty of automatic

test generation for intraprocedural and interprocedural code.

Contributions.We claim the following research contributions.

APC-IP Formalization. Extension of the theory and algorithms es-

tablished for APC to account for interprocedural functions.

Optimization Over All Previous APC Approaches. Replacing theoreti-

cal steps in previous algorithms to improve performance for both

interprocedural and intraprocedural code.

APC-IP Implementation. Implementing APC-IP atopMetrinome,

an existing APC analysis tool.

APC-IP Experimental Validation. Veri�cation that APC-IP gives an

accurate APC for both intraprocedural and interprocedural, and

is the fastest option to process complex source codes. APC-IP is a

predictor of path explosion in symbolic execution experiments.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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int gcd(int a, int b) {

while (a != b){

if (a > b) a = a - b;

else b = b - a;}

return a;

}

Figure 1: Source code for gcd function.

In the following sections, the paper covers the intuition of the

asymptotic path complexity metric, reviews previous work on com-

puting the APC for intraprocedural functions, and the theoretical

changes and optimizations that produce a correct and e�cient APC-

IP algorithm. Finally the paper will cover the experimental results

comparing our APC-IP with previous APC metrics as well as Klee.

2 PATH COMPLEXITY BACKGROUND

Here, we introduce and de�ne path complexity and asymptotic path

complexity. Path complexity is a function expressing the number

of execution paths through a program within a certain execution

depth =. Computing path complexity relies on: (1) the control �ow

graph (CFG), a standard representation of a program’s structure,

(2) formal language theory including context free grammars, and

(3) the theory of generating functions.

2.1 Asymptotic Path Complexity Intuition

Asymptotic path complexity (APC) is an asymptotic upper bound of

the path complexity metric. APC is calculated in terms of =, which

is the program’s execution depth, or the length of the path through

the Control Flow Graph.We de�ne the path length to be the number

of edges in the path. The asymptotic path complexity of a program

P is expressed as a function 5 (=) such that 5 (=) = $ (?0Cℎ(=)),

where ?0Cℎ(=) is the number of di�erent executions of a program

with maximum execution length =. Earlier studies have computed

APC for non-recursive as well as recursive programs [3, 19]. Our

work extends this metric for interprocedural functions.

2.2 Path Complexity Examples

To explain the intuition of path complexity, we demonstrate com-

puting path complexity by hand for small depths. We count the

paths until a certain depth for three examples: one non-recursive

function, one recursive function, and one interprocedural function.

0. a!= b

1. a > b

2. a = a -b 3. b = b -a

T. gcd(a,b)

4. return a

Figure 2: Control Flow Graph for gcd function.

Example: gcd (Non-Recursive). In this control �ow graph (CFG)

of a gcd function (Figure 2), the nodes are labeled by the line number

of the code. Any counted path must go from start (node ) ) to exit

(node 4). Since gcd contains loops, there are in�nitely many paths

int palindrome_r(const char *s, int b, int e)

{

if ( (e - 1) <= b ) return 1;

if ( s[b] != s[e-1] ) return 0;

return palindrome_r(s, b+1, e-1);

}

Figure 3: Source code for palindrome function.

through this graph. Hence, a function in terms of maximum path

length= is used to express path complexity. Below is a table showing

both the number of pathswith length= (len(?) = =) and the number

of paths within depth = (len(?) ≤ =).
Depth, = 0 1 2 3 4 5 6 7 8 9 10 11 12

| {? : len(? ) = =} | 0 0 1 0 0 2 0 0 4 0 0 8 0
| {? : len(? ) ≤ =} | 0 0 1 1 1 3 3 3 7 7 7 15 15

For example, the shortest path, ) → 0→ 4, is length 2. The next

shortest paths are 2 paths of length 5, ) → 0→ 1→ 2→ 0→ 4,

and ) → 0 → 1 → 3 → 0 → 4 respectively. We continue to

complete the table above. One can manually verify that the function

2
[ (=+1)/3] −1 correlates with the numerical series in the table. With

Metrinome, the APC of the gcd function is upper-bounded by

2
[ (=+1)/3] − 1, approximately $ (1.26=).

0. if (e - 1 <= b)

4. return palindrome(s, b + 1, e - 1)

T. palindrome(s, b, e)

1. return 1 2. if (s[b] != s[e-1])

3. return 0

Recursive Call

5. exit
Recursive Return

Non-recursive Return

Figure 4: Control Flow Graph for palindrome function.

Example: palindrome (Recursive).A recursive palindrome func-

tion is given in Figure 4. When the recursive call is made at node 4,

the control �ow passes back to the entry point of the function at

node T. Similar to the previous path counting methods, the path

number is bounded by the length of execution given by =.
Depth, = 0 1 2 3 4 5 6 7 8 9 10 11 12

| {? : len(? ) = =} | 0 0 0 1 1 0 0 1 1 0 0 1 1
| {? : len(? ) ≤ =} | 0 0 0 1 2 2 2 3 4 4 4 5 6

Here, the shortest path is ) → 0 → 1 → 5, with length 3.

The next shortest path is ) → 0 → 2 → 3 → 5, with length 4.

Then, there is the �rst path with a recursive call, ) → 0 → 2 →

4 + () → 0→ 1→ 5) → 5. This path has length 7. By convention,

the recursive edge doesn’t count in the length, since no code is

executed in that step. Furthermore, the �nal 5 must occur once

we return from the recursive call to �nish the original call. For

recursive functions, call and return locations must be appropriately

matched within a path. By using the table, we can calculate the

path complexity to be ⌊=/2⌋ (for = > 2) which is $ (=/2).
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bool is_even(int n){

if (n == 0) return true;

else return is_odd(n - 1);

}

bool is_odd(int n){

if (n == 0) return false;

else return is_even(n - 1);

}

Figure 5: Source code for is_even and is_odd functions.

0 3. exit

T 0. is even(n)

0 0. if (n == 0)

0 1. return true 0 2. return is odd(n-1)

1 3. exit

T 1. is odd(n)

1 0. if (n == 1)

1 1. return true 1 2. return is even(n-1)

Non-interprocedural

Return

Interprocedural Return

Non-interprocedural

Return

Interprocedural Return

Interprocedural Call

Interprocedural Call

Figure 6: Control Flow Graph for is_even and is_odd func-

tions (dashed lines are interprocedural calls).

Example: is_even and is_odd (Interprocedural, mutually re-

cursive). The functions is_even and is_odd (CFGs in Figure 6)

have mutually recursive interprocedural calls where the node 0_2

calls is_odd and the node 1_2 calls is_even.

Depth, = 0 1 2 3 4 5 6 7 8 9 10 11 12

| {? : len(? ) = =} | 0 0 0 1 0 0 1 0 0 1 0 0 1
| {? : len(? ) ≤ =} | 0 0 0 1 1 1 2 2 2 3 3 3 4

Here, we see that our shortest path, )0 → 0_0 → 0_1 → 0_3,

is length 3. Our next shortest path is )0 → 0_0 → 0_2 + ()1 →

1_0→ 1_1→ 1_3) → 0_3 is length 6. This path contains nested

interprocedural calls. Then we have )0 → 0_0 → 0_2 + ()1 →

1_0→ 1_2+ ()0 → 0_0→ 0_1→ 0_3) → 1_3) → 0_3, of length 9.

Again, calls and returns should be matched. Similar to the previous

examples, interprocedural path complexity can also be manually

calculated with the the table. The number of paths within a given

depth can be expressed as ⌊=/3⌋ for this function (where = > 2).

Observations. The gcd function’s CFG can be thought of as a �nite

automaton where paths in the graph form a regular language [22].

The recursive palindrome example instead requires matching calls

and returns, hinting at the need for a context-free language to

represent paths [22]. The analytic combinatorics behind counting

members of regular and context-free languages parameterized by

length is well understood [8, 10, 12], and it is these methods that are

used straightforwardly in existing APC analyses [3, 19]. However,

interprocedural paths (as in the is_even and is_odd example) can

be thought of as generated by an interdependent set of recursive

context-free grammars. Now, one could treat such a system of cou-

pled context-free grammars as a single large grammar and apply

the same approaches in order to compute interprocedural APC, but

we observed that this is too ine�cient to be an e�ective method

for computing APC. Similar to solving coupled systems of di�er-

ence equations [15], carefully simplifying subsystems of constraints

that arise from these interdependent systems of graphs and gram-

mars is the key to making our approach e�cient for computing

interprocedural APC (i.e. Algorithms 5 and 6 of Section 3.3).

2.3 Recursive Path Complexity Analysis

An existing approach, APC-R for non-interprocedural recursive

code [19], is reproduced here in Algorithm 1. The �rst two lines

which compute the control �ow graph and the system of equations

are elided in this paper, but control �ow graph construction is well-

known, and our following examples elucidate how the system of

equations is constructed from the CFG.

Algorithm 1 APC-R: Asymptotic-Analysis of

Recursive Functions (Program P)

1: � ← Control-Flow-Graph(% )
2: ( ← System(� )
3: + ← Variables(( ) ⊲ get the variables in (
4: Γ ← Eliminate((,+ /{) }) ⊲ Γ in terms of)
5: � ← Discriminant(Γ)
6: ' ← Roots(� )
7: if (' = ∅) then ⊲ Case 1
8: 6 (I ) = Solve(Γ,) )/(1 − I )
9: apc = Symb-Calc(6, ') ← upper bound of 6
10: else ⊲ Case 2
11: A ∗ ← minimum positive real root in '
12: apc← (1/A ∗ )=

13: return apc ⊲ Return Asymptotic Path Complexity

To compute APC for a program % , the algorithm produces a

control �ow graph� , and then converts it to a context free grammar

' and then to a system of equations ( . The grammar' is constructed

such that its language L(') corresponds with paths through � .

A context free grammar is used because all strings that can be

generated by the context-free language correspond to paths through

the control-�ow graph, which is what we wish to count. Each string-

replacement grammar rule encodes information about a node in

the control graph: which nodes it can lead to, if there are any

recursive calls, and whether or not it’s a return node. The Chomsky-

Schützenberger Enumeration Theorem is then applied to compute

a system of equations that describes constraints on a combinatorial

generating function that counts the number of strings of a given

length, as explained in the following examples.

Theorem (Chomsky–Schützenberger, 1963) If ! is a context-free

language with unambiguous context-free grammar, and 0: is the

number of words of length : in !, then 6(G) =
∑∞
:=0

0:G
: is a power

series over N that is algebraic over Q(G). □

Continued Example: palindrome.We start with the control �ow

graph on the left of Figure 7, then create the context-free grammar

(below left) and use Chomsky–Schützenberger to transform it into

a system of equations (below right).

) → 0+0

+0 → 1+1 |2+2

+1 → 5+5

+2 → 3+3 |4+4

+3 → 5+5

+4 → ) 5+5

+5 → Y

Chomsky-Schützenberger
−−−−−−−−−−−−−−−−−−−−−→

Transformation

) = +0G
+0 = +1G ++2G
+1 = +5G
+2 = +3G ++4G
+3 = G
+4 = )+5G
+5 = 1

Looking at the context-free grammar, we note that string re-

placement rules correspond to traversing the control �ow graph.

For example, the �rst rule goes from ) to 0+0, representing a path

that just started at node 0, and is currently deciding what to do. The

second rule represents a branch in the control �ow graph:+0 can be

replaced with either 1+1 or 2+2, representing the split in the graph.

Finally, suppose we replace +1 with 5+5 and then replace +5 with Y
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– this is a terminal character, and the �nal generated string is 015,

representing following the leftmost path in the control �ow graph

and returning. On the other hand, if we traverse the rightmost path

of the graph, we have the option to replace+2 with 4+4, and then+4
with )5+5: since ) is the start symbol, this represents a recursive

call. Note that the ) is before the 5: the recursive call must return

before the calling node can return, so the recursive call’s string

replacement is before the path ends at node 5.

Substituting to eliminate variables +8 gives us ) =
G3 (1+G )
1−G4 . The

APC-R algorithm branches into two cases here. If the discriminant

� of) has any real roots, we can directly calculate the APC as ( 1A ∗ )
= ,

where A∗ is the minimum positive real root of � . In this example,

the discriminant of ) has no real roots, so we must take further

steps to compute the APC, using a generating function 6(G). This

generating function always has the formula 6(G) = )
1−G . This 6(G)

encodes, in its series expansion, the integer sequence of ?0Cℎ(=)

for = = 1, 2, 3, . . ., as the coe�cients of G1, G2, G3, . . .. That is, the

coe�cient [G=]6(G) is the number of paths through the control

�ow graph starting at ) with max depth =. For this example, the

Taylor expansion is 6(G) = )
1−G =

G3 (1+G )
(1−G4 ) (1−G )

= G3 + 2G4 + 2G5 + 2G6 + 3G7 + 4G8 + 4G9 + 4G10 + 5G11 + . . .

Observe that the coe�cients of this series exactly correspond to

the path counts of the earlier manually computed palindrome ex-

ample. A complete treatment of generating functions for encoding

sequences of integers can be found in several references [21, 24, 26].

After the generating function6(G) is produced, symbolic calculus

is used to compute the APC using the Taylor series of the generating

function. Given the generating function, 6, one computes

?0Cℎ (=) =

�
∑

8=0

<8−1
∑

9=0

28,9=
9

(

1

A8

)=

(1)

where A8 represents the distinct roots of the denominator of 6,

9 as the multiplicity of A8 , and each 28, 9 is the coe�cient of the

corresponding term in ?0Cℎ(=), which is solved for as a system

of equations using linear algebra. This equation gives the upper

bound of path complexity, and the asymptotic value is APC. Using

this approach, the APC-R of palindrome function is$ (=/2). A full

discussion of this method is found in [2]. The overall algorithm for

APC-R is summarized in Algorithm 1.

3 INTERPROCEDURAL PATH COMPLEXITY

3.1 Introduction

APC-R is capable of computing the path complexity of recursive

functions by including recursive calls in the context-free grammar.

We adapt this approach to develop APC-IP, which can compute

the path complexity of interprocedural functions. We implement

three major changes: the �rst is su�cient for correctness, while the

second and third make the algorithm computationally tractable.

Our �rst change, covered in Section 3.2, is to relabel the ver-

tices of the control �ow graph and thus the variables in the system

of equations to handle multiple graphs. We produce control �ow

graphs �0, . . . ,�= for each function in program P, instead of one

control �ow graph for the singular function. These control �ow

graphs also contain metadata representing function calls. Subse-

quently, we produce a set of interrelated systems to solve, with

each system encoding a single graph, instead of a single system

encoding all the graphs. This relabeling is su�cient to produce a

theoretically correct yet naive algorithm for interprocedural path

complexity analysis, which we call NAPC-IP. However, empirically,

NAPC-IP is computationally intractable for interprocedural func-

tions of any signi�cant size or complexity. Therefore, we optimize

solving the system of equations in Section 3.3, implementing a

Eliminate-Optimized in Line 4 that is designed to solve lengthy

and numerous interrelated systems. In addition, we replace the as-

ymptotic analysis of the generating function via symbolic calculus

(line 9 of Alg 1, Symb-Calc) with a more e�ective analytic combi-

natorial approach (line 9 of Alg 2, GetRgf) in Section 3.4. Our �nal

algorithm, APC-IP (Alg 2), implements both these optimizations.

The three major changes from APC-R to APC-IP are detailed in

section 3.2, 3.3, and 3.4 respectively.

Algorithm 2 APC-IP: Asymptotic-Analysis of

Interprocedural Functions (Program P)

1: �0, . . . ,�= ← Control-Flow-Graphs(% )
2: ( = (0, . . . , (= ← Systems(�0, . . . ,�= ) ⊲ Alg 3
3: + = +0, . . . ,+= ← Variables((0, . . . , (= )
4: Γ ← Eliminate-Optimized((,+ /{)0 }) ⊲ Alg 5
5: � ← Discriminant(Γ)
6: ' ← Roots(� )
7: if (' = ∅) then ⊲ Case 1
8: 6 (I ) = Solve(Γ,)0 )/(1 − I )
9: apc = GETRGF(6, ') ← upper bound of 6 ⊲ Alg 7
10: else ⊲ Case 2
11: A ∗ ← minimum positive real root in '
12: apc← (1/A ∗ )=

13: return apc ⊲ Return Asymptotic Path Complexity

3.2 From Code to Systems of Equations

As we saw in section 2.3, the �rst step of APC-R is to convert the

source code of a function into a control �ow graph (CFG). We �rst

establish a start node ) that points to the function’s �rst node. All

other nodes are named += , where = represents that node’s number.

We adapt this labeling process for interprocedural functions.

Each separate function needs unique labeling and a start symbol

we can refer to. Thus, for the i-th function we assign a start node

)8 and non-terminal nodes+8, 9 , for the j-th node of the i-th function.

Continued Example: palindrome. Recall from section 2.3 the

code of the palindrome function. Using the labeling convention

established for APC-R, the CFG for the palindrome function would

correspond to the left graph of Figure 7. With our convention, the

CFG for this function corresponds to the graph in the right.

Continued Example: is_even and is_odd. We manually com-

puted this APC in Section 2. We now use APC-IP.

Below is the APC-IP algorithm to generate the systems of equa-

tions from the control �ow graphs. It operates identically to the

System algorithm inAPC-R, except that it produces a system for

each graph, and the variables are indexed by both graph and node.

Systems (Algorithm 3) produces interrelated systems, where the

+8, 9 vertex variables are contained within a graph’s system (8 , but

the )8 variables are interrelated by function calls.

Here are the systems this algorithm produces from the control

�ow graphs for is_even.
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V0,1

V0,0

V0,2

V0,4V0,3

V1

V0

V2

V4V3

T0

V0,5

T

V5

Figure 7: CFG for palindrome using APC-R labeling in the left

and APC-IP labeling in the right (dashed lines are recursive

calls / returns).

V0,1

V0,0

V0,2

T0 is even(n)

V1,0

V1,2

V1,3

T1 is odd(n)

V1,1

V0,3

Figure 8: CFGs for is_even and is_odd using APC-IP labels

(dashed lines are interprocedural calls / returns).

Algorithm 3 Systems (Graphs �0, . . . ,�=)

1: for each�8 do ⊲ Make system for each graph
2: (8 = {)8 = G+8,0 } ⊲ Initial equation for each system of equations
3: for each 9 ∈ Nodes(�8 ) do
4: 4G?A = 0

5: for each : ∈ Out-Neighbors( 9 ) do
6: 4G?A = 4G?A ++8,:

7: if expr = 0 then ⊲ 9 has no children
8: 4G?A = 1 ⊲ To preserve terminal nodes’ calls

9: for each)F ∈ Calls( 9 ) do ⊲ A node can have >1 outgoing calls
10: 4G?A = )F · 4G?A

11: eqn = {+8,9 = 4G?A · G }
12: (8 = (8 ∪ eqn ⊲ Add equation to system

13: return ( = {(0, (1, . . . , (= } ⊲ Return systems

System 0 (is_even)
)0 = +0,0G
+0,0 = +0,1G ++0,2G
+0,1 = +0,3G
+0,2 = )1+0,3G
+0,3 = 1

System 1 (is_odd)

)1 = +1,0G
+1,0 = +1,1G ++1,2G
+1,1 = +1,3G
+1,2 = )0+1,3G
+1,3 = 1

To �nd our Γ function, instead of solving for ) , we solve for

)0, which is the ) of the function whose path complexity we are

calculating. This modi�cation to APC-R is su�cient to produce a

theoretically correct path complexity algorithm for interprocedu-

ral functions. As such, we refer to APC-R with this modi�cation

alone as NAPC-IP, or naive asymptotic path complexity for inter-

procedural functions. However, empirically, NAPC-IP is ine�cient

and unable to process interprocedural functions with any signi�-

cant complexity. For example, processing an interprocedural merge

sort function took over 2000 seconds. As such, we implement two

further changes in the following subsections, one to the step of solv-

ing the systems, and one to the step of analysis on the generating

function 6(G), to produce our �nal APC-IP.

3.3 Computing the Generating Function

The �rst of two major performance issues with NAPC-IP was solv-

ing the system of equations, which occurs in line 4 of the Algo-

rithms 2 and 3. When multiple graphs or long systems of equations

were involved, the former Eliminate-Naive, which was left un-

changed from APC-R, often stalls, crashs, or times out. Eliminate-

Naive solves the system in its entirety, solving for ) in APC-R,

and )0 for NAPC-IP. Our new method Eliminate-Optimized is

optimized for function calls and larger systems of equations. These

optimizations slow down the algorithm for small computations, but

greatly enhance performance for di�cult source code. Our original

Eliminate-Naive, shown below, iterates through the system of

equations to eliminate until the �rst variable, ) in APC-R and )0
in NAPC-IP. It also makes 2 interior loops through the system of

equations, one to search for a solution if need be, and one to substi-

tute that solution in. It searches for a solution in the case where an

equation of the form - = �, where we are solving for - , contains

- within �.

Algorithm 4 Eliminate-Naive (system ( , vars + )

1: if len(( ) = 1 then
2: return ( [0]

3: sub← expression for last variable+ [−1] from last equation ( [−1]
4: if + [−1] ∈ sub then ⊲ If last equation has last variable on both sides
5: for each eq ∈ ( do
6: if + [−1] ∈ eq then
7: sub = ($!+� (eq,+ [−1] )
8: if len(sub) = 1 then ⊲ Unique solution for variable
9: break
10: for each eq ∈ ( do ⊲ Substitute solution throughout the system of equations
11: if + [−1] ∈ 4@ then
12: eq← substitute sub for+ [−1] in eq

13: return Eliminate-Naive(( [: −1],+ [: −1] )

Algorithm 5 Eliminate-Optimized (Systems ( , Vars + )

1: ( = (0, (1, . . . , (=
2: ) = {}
3: for each 8 ∈ ;4= (( ) do ⊲ Solve each system for)8
4: d← substitution dictionary for eliminating
5: d = {{+: : all eqns containing+: }∀+: ∈ (8 }
6: ) ← add Partial-Eliminate((8 ,+8 , d)

7: d = {)8 : {all eqns ∈ ) containing)8 }}
8: E = {)0,)1, . . . ,)= } ⊲ Variables for eliminating) s
9: return Partial-Eliminate(), E,3 ) ⊲ Solve) s for)0

Our new algorithm, Eliminate-Optimized, makes two key changes:

(1) solving each graph’s system of equations separately before com-

bining them, (2) using a dictionary to optimize iteration through

each system. Solving each system of equations is done by a helper

function, Partial-Eliminate, and entails eliminating all the +8, 9
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Algorithm 6 Partial-Eliminate (sys B , vars E , dict 3)

1: if ;4= (B ) = 1 then
2: return B [0] ⊲ Return)8 = �

3: var = E [−1] ← var to eliminate
4: eqn = B [−1] ← eqn of form var = �
5: sub← right side of eqn, equal to var

6: if var ∈ sub then ⊲ Must solve for var
7: for each eq ∈ d[var] s.t. eq in bounds do
8: sub = B>;E4 (eq, var)
9: if ;4= (sub) = 1 then ⊲ Unique solution for var
10: break
11: for each eq ∈ d[var] do
12: eq← substitute var with sub

13: d← update dict d after substitution

14: return Partial-Eliminate(B [: −1], E [: −1], 3 )

vertex variables, which are speci�c to a single system of equations,

since a graph can only call another graph’s ) variable. This re-

sults in a single equation for )8 in terms of other ): s. Solving these

lightly-coupled systems separately at �rst allows us to avoid work-

ing with complex polynomial equations for longer, thus speeding

up our symbolic solving package. Partial-Eliminate also uses a

substitution dictionary d to avoid iterating once through the whole

system of equations to �nd solutions and iterating through again

to substitute them in. This replaces the loops on lines 5 and 10 in

Algorithm 4 that iterate through the whole system for shorter loops

that only pass through the necessary equations (usually 3 or less).

After solving each system of equations for )8 , we combine these

equations into a �nal system of equations containing only ) vari-

ables, and solve these for)0 with a �nal call to Partial-Eliminate.

Continued Example: is_even and is_odd. We continue our ex-

ample of is_even and is_odd to illustrate some of the di�erences

in our methods. Recall the systems of equations:

System 0 (is_even)
)0 = +0,0G
+0,0 = +0,1G ++0,2G
+0,1 = +0,3G
+0,2 = )1+0,3G
+0,3 = 1

System 1 (is_odd)

)1 = +1,0G
+1,0 = +1,1G ++1,2G
+1,1 = +1,3G
+1,2 = )0+1,3G
+1,3 = 1

The old method would backsolve the system, treating these in-

terrelated systems of equations as one singular, large system of

equations, solving from +1,3 to )1 to +0,3 to )0. In cases where a

variable being solved for was on both sides of the equation, it would

iterate through the list of equations to isolate and solve it in an-

other equation, and then plug that solution in. It results in the �nal

equation )0 = G3 + G6 +)0G
6, which we refer to as Γ.

The newmethod would solve as follows. We show the separation

of systems of equations for easier backsolving; recall that all the

substitutions shown would be found using a dictionary. We begin

with the two separated systems shown above, and start eliminating

the �rst system until )0 (step 1-3) to get:

)0 = G3 +)1G
3

)1 = +1,0G
+1,0 = +1,1G ++1,2G
+1,1 = G
+1,2 = )0+1,3G
+1,3 = 1

Steps 4-7: Eliminate the second system until )0

)0 = G3 +)1G
3 )1 = +1,0G = G3 +)0G

3

Step 8: Eliminate )1 by substituting the equation on the right into

the one on the left. We get )0 = G3 + G6 + )0G
6. Our Eliminate-

Optimized also yields )0 = G3 + G6 +)0G
6 as our Γ.

After elimination, we calculate the discriminant of Γ, as described

in [19]. If the discriminant has no real roots, we move into Case 1.

Else, we move into Case 2. This example is Case 1, so we now solve

for )0 in Γ to �nd our generating function, exactly as we did in

APC-R. After algebraic manipulation, we get )0 =
G3

1−G3 . Therefore,

we get the generating function 6(G) = )0
1−G =

G3

(1−G ) (1−G3 )
.

Our Eliminate-Optimized thus solves multiple systems of equa-

tions more e�ciently, and arrives at the same gamma function,

which can be turned into a generating function exactly as in APC-R.

Now that we have our generating function 6(G), we must �nd an

upper bound of 6 as the last step in computing APC.

3.4 From Generating Function to APC

Recall that a generating function encodes a sequence using the

coe�cient of the series expansion. Our generating function 6(G)

represents the sequence ?0Cℎ(=). Then, the coe�cient of G= in the

Taylor expansion of 6(G), [G=]6(G), is ?0Cℎ(=), or the number of

paths through the CFG within depth =. In this step of the algorithm,

we compute the asymptotic behavior of the closed form of [G=]6(G),

resulting in the APC, which bounds ?0Cℎ(=) above.

In NAPC-IP, the second step that was computationally costly was

the symbolic calculus inside Case 1 (Symb-Calc). When the APC

from the generating function is calculated, the number of required

computations rapidly increase with more complex functions, grow-

ing faster than the number of nodes in the control �ow graphs. For

more complicated functions, part of this method requires the Taylor

series of the generating function up to 100 terms. In practice, it can

take more than 1000 seconds to compute all the required Taylor

series terms. In APC-IP, we replace the Symb-Calc step with our

new method GETRGF, where the computations are bounded by the

roots of the generating function 6(G)’s denominator. In GETRGF,

6(G) and the General Expansion Theorem for Rational Generating

Functions [11] are enough to compute APC.

General Expansion Theorem for Rational Generating Func-

tions (GetRgf). If 6(G) = % (G)/& (G), where & (G) = @0 (1 −

d1G)
31 (1−d2G)

32 . . . (1−dCG)
3C and the numbers (d1, d2, . . . , dC ) are

distinct, and if % (G) is a polynomial of degree less than31+32+· · ·+3C ,

then [G=]6(G) = 51 (=)d
=
1
+ 52 (=)d

=
2
+· · ·+ 5C (=)d

=
C , where each 5: (=)

is a polynomial of degree 3: − 1 with leading coe�cient

0: =
% (1/d: )

(3: − 1)!@0
∏

9≠: (1 − d 9/d: )
3 9

.□

Below outlines a step by step procedure of our novel approach

for getting the APC from generating function.

(1) From the generating function (6(G)), �rst get its denominator

(& (G)), numerator (% (G)), and the dictionary A>>CB�82C . The dictio-

nary A>>CB�82C stores all the distinct roots A8 of the denominator

along with its multiplicity 38 :

A>>CB�82C = {(A8 : 38 ) | A8 is a root of & (G)}
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(2) If the degree of % (G) is greater than the degree of & (G), the

generating function does not satisfy the requirements of the theo-

rem. Thus, we use polynomial long division to �nd the remainder

'(G) of % (G)/& (G), which has a lesser degree than & (G). Since

6(G) = % (G)/& (G) = ( (G) + '(G)/& (G) for some �nite polynomial

( (G), ( (G) can only a�ect the Taylor series expansion of 6(G) for

small powers of =, and thus would not change the asymptotic path

complexity of [G=]6(G). Therefore, we can simply replace % (G)

with '(G) when �nding the asymptotic upper bound of 6(G)’s co-

e�cients, in order to satisfy the theorem conditions.

(3) Then, the reciprocal d8 of each of the roots A8 in A>>CB�82C is

computed. The multiplicity 38 is also recorded:

Aℎ>�82C = {(d8 =
1

A8
: 38 )

�

� ∀ A8 ∈ A>>CB�82C}

(4) To �nd the dominant term in [G=]6(G), the �rst step is to �nd

the maximum magnitude of all the d8 , name it d<0G :

d<0G =<0G{|d8 |
�

� d8 ∈ Aℎ>�82C}.

Let< be the highest multiplicity of all the d8 such that |d8 | = d<0G :

< =<0G{38 | ∀ |d8 | = d<0G }

Among all the d8 such that |d8 | = d<0G , only consider the ones

with multiplicity<. Let

( = {d:
�

� (3: =<) ∧ (|d: | = d<0G )}.

(5) Then the 0: can be computed for each d: ∈ ( using the above

formula. That is,

� = {0:
�

� ∀ d: ∈ (,

0: =
% (1/d: )

(3: − 1)!@0
∏

9≠: (1 − d 9/d: )
3 9

(2)

where d 9 ∈ Aℎ>�82C}.

Note that @0 is the constant term in & (G). Further note that the

product includes all d 9 ∈ Aℎ>�82C , not merely the d 9 ∈ ( .

(6) After computing all the 0: , sum them to compute the coe�cient

2 =
∑

0: ∈�

0:

for the leading term of [G=]� (G). The leading term itself is the APC,

and it can be described by �%� = 2 · =<−1 · d=<0G .

Instead of computing path complexity and then obtaining its

asymptotic behavior to �nd the APC, this new method allows us to

go straight from the generating function directly to APC.

Example: partition. To further explain, we present as an example

an interprocedural partition function that calls a swap function.

We compute the APC starting from the generating function using

our new method.

The generating function for partition is computed by the meth-

ods we have already explained:

6(G) =
% (G)

& (G)
=

G6

(G − 1) (G8 + G4 − 1)
.

= G6 + G7 + G8 + G9 + 2G10 + 2G11 + 2G12 + 2G13 + 4G14 + 4G15 ...

Then, the APC for partition can be computed using GETRGF.

int partition(int arr[], int low, int high){

int pivot = arr[high];

int i = (low - 1);

for (int j = low; j <= high - 1; j++){

if (arr[j] < pivot){

i++;

swap(&arr[i], &arr[j]);

}

}

swap(&arr[i + 1], &arr[high]);

return (i + 1);

}

Figure 9: Source code for partition function.

Step 1-2: The numerator is % (G) = G6 and the denominator is

& (G) = (G − 1) (G8 + G4 − 1). The degree of the numerator is less

than the denominator, so the generating function satisfy GETRGF

restriction. The roots of & (G) are A1 = −0.887, A2 = 0.887, A3 = 1,

A4 = −0.798−0.7988 , A5 = −0.798+0.7988 , A6 = −0.8878 , A7 = 0.88728 ,

A8 = 0.798 − 0.7988 , A9 = 0.798 + 0.7988 . They all have multiplicity 1.

Step 3: Compute the d’s by taking the reciprocal of the roots: d1 =

−1.128, d2 = 1.128, d3 = 1, d4 = 0.627+0.6278 , d5 = −0.627−0.6278 ,

d6 = 1.1288 , d7 = −1.1288 , d8 = 0.627 + 0.6278 , d9 = 0.627 − 0.6278 .

Step 4: The maximum magnitude of d is d<0G = 1.128. Note that

d1, d2, d6, d7 all have the same maximum magnitude. Among them,

the maximum multiplicity is 1, so< = 1. Thus, the ( contains

( = {d: ∈ Aℎ>�82C
�

� (3: =< = 1) ∧ (|d: | = d<0G = 1.128)}

= {d1, d2, d6, d7}

= {−1.128, 1.128, 1.1288,−1.1288}

Step 5: Compute the respective � = {01, 02, 06, 07}. To do this, the

constant term @0 in & (G) is needed, which is 1 for this example.

We use equation 2 with all 3: = 1, and @0 = 1. Below, we show a

detailed calculation of 01 as an example.

01 =
% (1/d1 )

(31 − 1)!@0
∏

9≠1 (1 − d 9 /d1 )31
=

(1/d1 )
6

(1 − 1)! · 1
∏

9≠1 (1 − d 9 /d1 )

=
(1/d1 )

6

(1 −
d2
d1
) (1 −

d3
d1
) (1 −

d4
d1
) · · · (1 −

d9
d1
)

= 0.047 − 3.968 · 10−188

With similar computation, we get 02 = 0.776, 06 = −0.049 + 0.0448 ,

and 07 = −0.049 − 0.0448 .

Step 6: Now we have

2 =
∑

0: ∈�

0: = 0.724 − 1.39 · 10−178 ≈ 0.724

Finally we calculate

0?2 = 2 · =<−1 · d=<0G = 0.724 · =1−1 · 1.128= = 0.724 · 1.128=

Thus, the APC for partition is 0.724 · 1.128= . Alg 7 summarizes

the algorithm GETRGF to compute asymptotic path complexity

from the generating function.

4 EXPERIMENTS

We conducted a series of experiments to validate our new approach

APC-IP and compare to existing approaches.
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Algorithm 7 GETRGF (6(G))

1: Let

6 (G ) =
% (G )

& (G )
.

2: if (346 (% (G ) ) ≥ 346 (& (G ) )) then
3: % (G ) ← ' (G ) where ⊲ Make 346 (% (G ) ) < 346 (& (G ) )
4: ' (G ) ← remainder of % (G )/& (G )

5: A ← Roots(& (G ))
6: d ← inverses of the roots in A
7: dmax ← maximum magnitude of all the d
8: < ← maximum multiplicity among the d such that |d8 | = dmax
9: d: ← any d with magnitude dmax and multiplicity<
10: @0 ← constant term for& (G )
11: for each d: do ⊲ Compute with GETRGF Theorem

0: =
% (1/d: )

(< − 1)!@0
∏

9≠: (1 − d 9 /d: )<
.

12: 2 ←
∑

d:

0:

13: �%� ← 2 · =<−1d=max
14: return�%� ⊲ Return asymptotic path complexity

4.1 Experimental Setup

4.1.1 APC Implementation Versions. To demonstrate that our ap-

proach subsumes and improves upon prior work, we investigate

multiple APC implementations:

APC-IP. This is our implementation of fully interprocedural and

optimized asymptotic path complexity (Algorithm 2). We imple-

mented this directly on top of the existing Metrinome software.

As part of our ablation studies (see next section), we investigate the

two modi�cations from NAPC-IP in APC-IP to evaluate the e�ects

of each one.

APC-R. This is the implementation of APC analysis from Metri-

nome as given in the 2023 paper “Formalizing Symbolic Execution

Path Explosion for Recursive Functions via Asymptotic Path Com-

plexity” from the 2023 Formal Methods in Software Engineering

(FormaliSE) proceedings [19]. This constitutes the most recent ad-

vance in APC analysis available for comparison. APC-R is able to

perform intraprodecural APC analysis on single functions that do

not call any other functions or APC analysis on functions that only

make self-recursive function calls. That is, APC-R as implemented

did not handle interprocedural APC analysis.

NAPC-IP. This is a “naive,” non-optimized implementation of inter-

procedural asymptotic path complexity. This implementation takes

APC-R and adds the absolute minimum necessary modi�cation to

apply APC-R to interprocedural code. APC-R solves a system of

equations derived from the control �ow graph of the analyzed func-

tion to produce its result. Our minimal modi�cation amounts to

relabelling variables in the several systems of equations created for

mutually dependent functions under analysis such that the APC-R

analysis can treat them as one large system of equations.

4.1.2 Summary of Experiments Conducted. We frame our experi-

mental analysis around the three aforementioned APC implemen-

tations. This allows us to isolate and measure the e�ects of each

optimization in our implementation, compare to prior implemen-

tations, and compare our approach to a naive but straightforward

baseline. To that end we conducted the following experiments:

Ablation Study 1. We compare the optimized variable elimina-

tion strategy of APC-IP (Algorithm 5 Eliminate-Optimized) to

the naive variable elimination strategy of NAPC-IP (Algorithm 4

Eliminate-Naive).

Ablation Study 2.We compare APC-IP’s novel use and implemen-

tation of the generalized expansion theorem for regular generating

functions (GETRGF, Algorithm 7) to NAPC-IP’s symbolic calculus

approach to bounding generating functions, (Symb-Calc).

Head-to-Head Comparisons.We run APC-IP, APC-R, and NAPC-

IP on the same code to compare runtimes and the resulting APCs.

Klee Path Explosion and APC. We ran Klee on a subset of

our benchmark to measure path explosion as symbolic execution

exploration depth increases and compare to APC-IP.

4.1.3 Benchmark Programs. We choose an externally sourced bench-

mark of C algorithms, found at https://github.com/TheAlgorithms/

C. This repository includes common C algorithms, such as sorting,

searching, and dynamic programming algorithms. We also chose

this repository for readability, documentation, and credibility. It

is reviewed with 17.4K stars on GitHub and has 4.2K forks. This

benchmark also contains programs which exercise various aspects

of the di�erent implementations. First, the benchmark contains

non-recursive, recursive, and interprocedural functions. Second,

the benchmark has functions that well-represent a variety of in-

teracting control structures likely to yield variation in resulting

APC values: straight-line code, nested conditionals, nested loops,

loops and conditionals nested within one another, function calls in

loops, and so on. Our benchmark contains the 76 functions from

this repository, and we supplement it with three functions from our

running examples: an even or odd function, a partition function,

and a palindrome function, to create a benchmark of 79 functions.

4.1.4 Experiment Hardware Specifications. We performed the ex-

periments on a 12th Gen Intel 505 MHz i7-12700 computer with

Python v3.10.6, Ubuntu 22.04.2, and 16GB RAM.

4.2 Experimental Results

4.2.1 Ablation Experiments. To evaluate each of our two improve-

ments, we conduct ablation studies, isolating our changes in APC-IP

(Algorithm 2). Our �rst change is optimizing the elimination of vari-

ables in systems of equations (Algorithm 4) and the second is to

completely replace our algorithm bounding the generation func-

tion using GETRGF (Algorithm 7). We refer to these processes as

Eliminate and GETRGF.

Ablation Study 1. For the Eliminate tests, we compare not only

the elimination, but the processing of the graphs into the system of

equations. This is because these two processes are tightly coupled

in Algorithm 5, which needs to do additional processing on the

graphs to create dictionaries of graph edges that we use to optimize

the variable elimination process. We compute the ratios of the

runtimes of the non-optimized elimination strategy to the optimized

elimination strategy for all benchmark functions. When this ratio

is below 1, the additional inital overhead of the optimized version

actually causes the runtime to be worse, and so the naive version is

better.When the ratio is greater than 1, then the additional overhead

of the optimization does indeed provide improvement.

Results of the �rst ablation study are in Figure 10. This graph

shows the runtime performance ratios for benchmark functions,

sorted by run-time of the non-optimized (naive) eliminationmethod,
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Figure 10: Eliminate Ablation Study Results. Performance ratio of Eliminate-Optimized to Eliminate-Naive (y-axis, log

scale) for di�erent run times in seconds (x-axis, linear scale).

with runtimes on the x-axis. Note that we ran the experiments with

a timeout of 6000s, and so for several programs, the optimized ver-

sion was able to complete quickly in cases where the non-optimized

version could not even �nish; this is the rightmost column labeled

as 6000s. We see that APC-IP does add small overhead in processing

time, which is visible for simpler programs (those for which elim-

ination runtime is less than 1.273 seconds and where the ratio is

less than 1), but is substantially faster for more complex programs.

The optimized version completed well within the timeout for all

programs. Seen in the �gure, our optimization of the elimination

method can result in signi�cant performance improvements “when

it matters.” Thus, we conclude that our new eliminate expands

Metrinome’s scope to more complex programs, with only a minor

cost in e�ciency for programs that are already reasonably fast to

analyze using either method anyway.

Ablation Study 2. For our GETRGF tests, we only compare the

subset of the benchmark functions that engage Case 1 of Algo-

rithm 2 (resp. Algorithm 1). Since in Case 2, both methods use the

same, quick method of bounding the generating function, we do

not compare the benchmark programs that fall into this case. This

leaves us with 67 benchmark programs in our GETRGF study. For

this study, we measure the runtime starting from directly after the

generating function 6(I) has been computed to the time APC is

determined.

Results of this study are summarized in Table 1. In this table, we

show the time performance ratio of the naive approach which does

not use GETRGF to our new approach which does use GETRGF.

The table shows the number of functions from the benchmark that

resulted in buckets of ranges of performance ratios. That is, 10

functions resulted in a performance ratio between 1 and 10, 34

functions resulted in a performance ratio between 10 and 100, 19

functions resulted in a performance ratio of 100 to 1000, and 4

functions resulted in a ratio greater than 1000. Also included in this

table are the ranges of run times for the two di�erent methods.

First we observe that the performance ratio is always greater

than 1, and so GETRGF is always faster. We also see that without

Table 1: GETRGF Ablation Study Results

Performance Ratio

(Naive/GETRGF)

Count of

functions

Naive

time range (s)

GETRGF

time range (s)

1-10 10 0.014 - 0.208 0.008 - 0.043

10-100 34 0.129 - 9.442 0.009 - 0.127

100-1000 19 10.218- 58.034 0.065 - 0.191

>1000 4 50.089 -50.923 0.026 - 0.040

GETRGF, the approach does not scale well to some functions, re-

quiring almost a minute of analysis time, whereas using GETRGF

was always in the range of 8 to 191 milliseconds.

4.2.2 APC-R, NAPC-IP vs APC-IP. We ran APC-IP, APC-R, and

NAPC-IP on 79 benchmark programs. We summarize results in

Table 2, highlight a representative subset of results in Table 3, and

compare performance ratios of APC-IP to APC-R and NAPC-IP in

Figures 11 and 12. All data is available and inspectable.

In the summarized results in Table 2 we separate functions

that are intraprocedural or self-recursive only (�rst line) and func-

tions that are interprocedural or may contain mutually recursive

calls (second line). For intraprocedural and self-recursive functions,

among 42 of them, APC-R runs the fastest in 7 of them, NAPC-IP

runs fastest in 5 of them, and APC-IP runs fastest for 30 of them.

For interprocedural functions or interprocedurally called recursive

functions (37 total) APC-R cannot compute APC as it is not imple-

mented to do so (NA for that column in the second line), NAPC-IP

was fastest for 3 functions and APC-IP was fastest for 34 functions.

Speci�c outcomes from a subset of the summarized experimental

results of Table 2 are shown in Table 3. The results are chosen to

holistically represent our benchmark with the goal of showing a

variety of functions and performing result comparisons. In all 79

functions, all three methods produces the same APC values. For

example, we can look at lines 6 (Fibonacci Search) and line 10 (Mul-

tikey Quick Sort). We see that APCs are consistant with the value

of 2.33× 1.22= , and that APC-IP was fastest as 0.88s compared over

two seconds for the other two approaches. Furthermore, APC-IP
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Table 2: Summary Results for APC-IP vs. APR-R vs. NAPC-IP.

Table entries indicate howmany times the given method was

fastest for a speci�c benchmark function.

Function type APC-R NAPC-IP APC-IP Count

Intraproc. / Recursive 7 5 30 42

Interprocedural NA 3 34 37

Total 7 8 64 79

elimination algorithm was slightly slower than a naive approach,

and that using the GETRGF method for APC-IP was much faster.

For line 10, APC-R does not apply, since that function makes in-

terprocedural calls. NAPC-IP and APC-IP has the same result, but

APC-IP is almost 9 times faster, the APC-IP elimination time saves

us a lot of time.

In Figure 11, we show runtime performance ratios for APC-R

compared to APC-IP. The x-axis is performance ratio ranges and

the y-axis is the number of functions resulting in that performance

ratio. We also indicate in blue the cases in which APC-R’s runtime

was under 1 second and in red the times when it was greater than 1

second. Note that the �rst bar with ratios 0.4 to 1 are cases in which

APC-R does better than APC-IP, since the performance ratio is less

than 1, and there are 10 such cases. What we see is that when the

simple APC-R method is already quite fast, APC-IP does not help

as much, but when APC-R is slower, the bene�t of our innovations

in APC-IP is more pronounced. Similar analysis and interpretation

applies to Figure 12, which compares the performance of APC-IP

and NAPC-IP on all 79 benchmark functions. Overall we conclude

that APC-IP outperforms the other twomethods in situations where

analysis is more costly and so the bene�ts pay o� for source code

that is more di�cult to analyze using path complexity analysis.

Figure 11: Performance of APC-IP vs APC-R

4.2.3 APC-IP vs Klee. Klee is a popular symbolic execution tool

for C programs [6]. Previous work [3, 19] showed that intraproce-

dural asymptotic path complexity bounds the complexity class of

the growth rate of number of paths found by Klee for increasing

symbolic exploration depth. That is, if the asymptotic path com-

plexity of a function is, say, quadratic, then the number of paths

Figure 12: Performance of APC-IP vs NAPC-IP

explored by Klee is no worse than quadratic for that function as

the exploration depth of Klee increases. And, if APC is exponential,

then Klee’s path explosion is no worse than exponential, and in

most cases actually does become exponential. Further, APC can be

computed faster than it takes to run Klee, so APC can be used to

predict the path explosion behavior of Klee before running it.

Though the relation between APC and symbolic execution has

been established, we still seek to con�rm that our new APC-IP

predicts Klee path explosion growth rates for interprocedural func-

tions. It is important to note that symbolic execution discards infea-

sible paths through the code, while our APC-IP does not consider

the actual path conditions. As such, APC-IP in some cases returns

a non-strict upper bound of the complexity class of Klee’s path

explosion. Further, APC-IP uses path depth as a basis for its metric,

while Klee uses branch count, causing mismatches in the exact co-

e�cients. However, overall, APC-IP achieves its goal of predicting

a coarse complexity class bound on Klee’s path explosion.

We were able to run Klee on 57 out of our 79 benchmark func-

tions. We were not able to meaningfully run Klee under its standard

con�gurations on our entire benchmark due to limitations in the

constraint solver backend, which prevents us from getting results

from Klee, e.g. when complex �oating point constraints are encoun-

tered during symbolic exploration. We tracked the number of paths

explored by Klee for increasing exploration depths and found the

best-�t curve through that data, as in prior works [19], to compute

the growth rate of Klee’s path explosion. We compared these path

explosion rates to the APC values of the functions computed using

APC-IP. While we do not provide all of the results directly in this

paper, a hand-selected sample of representative results is given in

Table 4, and the complete data is provided in our artifact.

In all but one case of Table 4, APC-IP bounds or matches the best

�t for Klee. APC lies in the same complexity class as the Klee best

�t expression in 4 of the 7 cases, and upper bounds it in 2 more.

The exponent base is not expected to match Klee exactly because

Klee bounds exploration by branch count, not CFG edge count. In

our full data, in 46 out of the 57 programs, APC-IP is in the same

complexity class as the Klee best �t line, and in 53 out of 57, we

bound the Klee best �t line. In 3 cases, we do not have enough data

for Klee to determine a best �t line, and in the one case shown in
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Table 3: APC data on C �les showing asymptotic path complexity (APC-R: recursive, NAPC-IP: naive interprocedural, APC-IP:

interprocedural, APC runtime, ablation runtime, the best APC).

Program
Name

Fastest

Metric1
APC-R NAPC-IP APC-IP

APC-R
time(s)

NAPC-IP
time(s)

APC-IP
time

APC-IP
eliminate
time(s)

NAPC-IP
eliminate
time(s)

GETRGF
time(s)

non-GETRGF
time(s)

1 Even Odd § APC-IP NA =/3 =/3 NA 0.22 0.14 0.08 0.01 0.01 0.16

2 Fibonacci (DP) APC-IP =/3 =/3 =/3 0.31 0.32 0.26 0.15 0.05 0.02 0.21

3 Palindrome (R) † APC-R =/2 =/2 =/2 0.11 0.11 0.12 0.05 0.01 0.01 0.06

4 Partition § APC-IP NA 0.72 ∗ 1.13= 0.72 ∗ 1.13= NA 1.10 0.40 0.21 0.05 0.06 0.69

5 Shaker Sort § APC-IP NA 0.12 ∗ 1.26= 0.12 ∗ 1.26= NA 32.04 1.51 0.92 0.27 0.09 30.69

6 Fibonacci Search APC-IP 2.33 ∗ 1.22= 2.33 ∗ 1.22= 2.33 ∗ 1.22= 2.14 2.18 0.88 0.63 0.16 0.05 1.54

7 Insertion Sort (R) † APC-IP 0.11 ∗ 1.35= 0.11 ∗ 1.35= 0.11 ∗ 1.35= 2.06 2.08 0.52 0.33 0.10 0.03 1.52

8 Cycle Sort § APC-IP NA 0.04 ∗ 1.36= 0.04 ∗ 1.36= NA 63.76 5.07 4.01 30.36 0.14 31.46

9 Bucket Sort § APC-IP NA NA 0.004 ∗ 1.39= NA >6000 42.39 36.53 NA 0.20 NA

10 Multikey Quick Sort § APC-IP NA 1.46= 1.46= NA 5242.50 102.10 5.39 3489.53 case 2 32.24
1 The "Fastest Metric" column shows the fastest APC metric applicable to the function.
† This version of the function is implemented recursively.
§ This version of the function involves interprocedual calls.
* In each row, the best time is highlighted in bold.

Table 4: APC and Klee data on C �les showing APC-IP and

best �t curve for Klee path explosion.

APC KLEE

Index Function APC-IP
APC-IP
Time(s)

Best Fit APC-IP
KLEE
Time(s)

1 Even-Odd § =/3 0.144 = yes 24.95

2 GCD † =/3 0.223 = yes 2.58

3 Floyd Alg. § 0.125 ∗ =2 0.635 9.58 ∗ 1.06= no, but close 34.06

4 Catalan § =3 0.272 = upper bound 215.5

5 Fib. Search 2.33 ∗ 1.22= 0.88 5.71 ∗ 1.28= yes 63.69

6 Bead Sort 0.37 ∗ 1.30= 4.91 1.90 ∗ 1.54= yes 23.31

7 Fib. (R) † 1.34= 0.123 = upper bound 1682.06

§ represents that the source code is interprocedural.
† This version of the function is implemented recursively.

Row 3 of Table 4, the APC-IP is quadratic while the Klee best �t

line is exponential, though we suspect that this is due to over�tting

in our bext-curve-�tting function. Overall, APC-IP predicts Klee

path explosion behavior.

4.3 Experimental Takeaways

We demonstrated that APC-IP e�ciently computes asymptotic path

complexity, and provides a sound upper bound on the degree of

Klee’s path explosion when testing simple, recursive, or interpro-

cedural programs. It successfully computes path complexity for

interprocedural functions, which the previous APC-R could not. For

intraprocedural functions, APC-IP matches APC-R’s results, with

faster runtime on complex functions. For interprocedural functions,

by optimizing the elimination step and implementing GETRGF to

bound the generating function, APC-IP e�ciently computes correct

APC for complex interprocedural functions, usually in under 10

seconds. APC-IP thus subsumes earlier APC work, and with drastic

improvements on performance cost.

5 RELATED WORK

APC-IP builds on the 2023 recursive path complexity research[19],

which itself extended earlier studies on non-recursive functions [2,

3]. Our approach covers both interprocedural and intraprocedural

code, including recursive and mutually recursive functions. In the

broader �eld, code complexity research measures the complexity

of programs [9, 18, 20] including cognitive complexity focused on

human code comprehension [7, 23, 25]. Other complexity metrics

include Halstead complexity, based on code size and code element

uniqueness [13] and Dependency degree for measuring code cou-

pling complexity [4]. Control �ow graph-based metrics like Mc-

Cabe’s cyclomatic [16] complexity and NPATH complexity [17]

quantify di�erent aspects of code complexity.

6 CONCLUSION

We described our work on computing asymptotic path complexity

for interprocedural functions (APC-IP). Prior methods could not

handle the theoretical complications or complexity and scale of

interprocedural code. Our work provides algorithmic and mathe-

matical formalization that not only allows for the computation of

path complexity in the presence of interprocedural calls but also

subsumes all previous methods in terms of runtime and accuracy

to make asymptotic path complexity tractable for a wider range of

programs.

APC-IP serves as a useful tool to compute code complexity of

medium-sized programs in the context of automated software test-

ing. Future work involves continuing to scale APC to meet the

scale of today’s industry code-bases. We also hope to extend APC

to process programs in more common programming languages,

such as Python and Java. Finally, we hope to conduct more robust

experiments directly comparing the performance and re�nement

of the APC-IP algorithm with other complexities, such as NPATH

and cyclomatic complexity.

7 DATA AVAILABILITY

The source code of APC-IP is avaialable alongwith our experimental

results, benchmark programs, and scripts for reproducing our data.

An explanation on how to run APC-IP and how to replicate these

experiments is included in the provided artifact as a README �le.

The most up-to-date information about Metrinome can be found

at our public repository.1
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