Formalizing Path

-xplosion for

Interprocedural Functions
via Asymptotic Path Complexity

Ana Beatriz Studart, Mira Kaniyur, Yuki Yang, Sangeon Park, Lucas Bang

Computer Science Department
Harvey Mudd College
Claremont, California, USA MUDD

Motivation

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Symbolic Execution

yydaQg uonoIo|dxg

(2R 2 2 A A A
\ /
°

Number of paths at this depth

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

A Metrinome

v

NKAA

Symbolic Execution

yydaQg uonoIo|dxg

(2R 2 2 A A A
\ /
°

Number of paths at this depth

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

‘ Asymptotic
_ Path Complexity
Metrinome m—) O(f (depth))

/ ﬂUpper Bound
NKAA ¢
Vv vy vy é/ f?

yydaQg uonoIo|dxg

\

SymbOlIC ExeCUtlon Number of paths at this depth

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

‘ Asymptotic
. Path Complexity
Metrinome m—) O(f (depth))

/V

Background

Symbolic Execution

— KA

Symbolic Execution

Symbolic Execution

aths

depth

‘ Asymptotic
I Metrinome =) Poth Complexity

v O(f (depth))

Symbolic Execution

— KAk —1

aths

depth

‘ Asymptotic
I Metrinome =) Poth Complexity

v O(f (depth))

Symbolic Execution

——— N
I\/Q/Q/ ' 8 O(f (depth))

depth

aths

‘ Asymptotic
I Metrinome =) Poth Complexity

v O(f (depth))

Symbolic Execution

——— N
I\/Q/Q/ ' g O(f (depth))

aths

ICSE 2021 depth

‘ FormaliSE 2023 _
Asymptotic
I Metrinome =) Poth Complexity
Y O(f (depth))
Combinatorics of

Context Free
Intraprocedural & Grammars

Self-recursive only

Symbolic Execution

(%]
L

— W m——) O
Q O(f (depth))
H*

ICSE 2021 depth
‘ FormaliSE 2023 _

Asymptotic

I Metrinome =) Poth Complexity

R O(f (depth))
Combinatorics of

Context Free
Grammars

Intraprocedural &
Self-recursive only

ISSTA 2024 -
Asymptotic
I Metrinome =) Poth Complexity

v O(f (depth))

Symbolic Execution "
/ =
— meess——) O
M Q O(f (depth))
It
ICSE 2021 depth
FormaliSE 2023 .
Asymptotic
I Metrinome =) Poth Complexity

R O(f (depth))
Combinatorics of

Context Free
Grammars

Intraprocedural &
Self-recursive only

. ISSTA 2024 -
Asymptotic
I Metrinome =) Poth Complexity
R O(f (depth))
OPTIMIZED!
Combinatorics of

Context Free
Grammars

+ Fully interprocedural
analysis

APC-IP (Interprocedural Asymptotic Path Complexity)

APC-IP earlier APC work

e produces the same results on the simpler benchmarks

APC-IP earlier APC work

e handles fully interprocedural code, unlike previous work

APC-IP outperforms earlier APC work

e much faster when it matters

APC-IP predicts symbolic execution explosion rate
e upper bound on execution paths explored by KLEE

What is Path Complexity?

Path Complexity

Asymptotic upper bound on the

number of paths in control flow
graph from start to exit

parameterized by execution depth.

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG)

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

3

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

3

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

<€

Yyi6usa uolynosx3y

Path Complexity Quantifies Path Explosion

Control Flow Graph (CFG) Symbolic Execution Tree

<€

L 2 2 2 2
\ /

Number of paths at this length
2(1ength +1)/3 _ 0(1.261ength)

Yyi6usa uolynosx3y

APC with Recursive Functions

APC-R
(FormaliSE 2023)

APC-R: Code — Control Flow Graph - Grammar

0. int fib(int n){

1. int f;

2 if (n < 2)

3. f=1;

4. else {int a = fib(n - 1)
5 int b = fib(n - 2)
6 f=a+b; }

7 return f; }

APC-R: Code — Control Flow Graph — Grammar

0. int fib(int n){

1 int f; 5

2 if (n < 2) \

3. f = 1; recursive

4. else {int a = fib(n - 1); u\ln.\-

5 int b = fib(n - 2); A \

6 f=a+hb:) 3. £=1; |4.a=f1b(3—1);l‘ll

! return f;) 5. b = £ib(n-2); A\
Y \

6. £ =a +b;] \j A

recursive
_ = returns

non-recursive ~ < _

return >

APC-R: Code — Control Flow Graph — Grammar

0. int fib(int n){

1 int f; 3

2 if (n < 2) Y

3. f = 1; recursive

4. else {int a = fib(n - 1); veltlls

5 int b = fib(n - 2); N \

6 f=a+hb:) 3. £=1;] [4. a = flb(il-l);L’J

/ return f;) 5. b = fib@-2); ['\
Y \.

X
6. £=a+b;| |/

recursive

Terminals are node numbers
O, 1, 2, 3, 4, 5, 6, 7 lll)ll-l‘(‘('lll‘.\i\'(\‘\\\

return

_ = returns

T

APC-R: Code — Control Flow Graph — Grammar
T

0. int fib(int n){ A

1 int f; , — Vs

) it (n'< 2) Bt int ;]

3. f = 1; recursive
4. else {int a = fib(n - 1); C i
5 int b = fib(n - 2); . . E
6 fza+b:) D[3 =1 I4.a=f1b(:-1)?]";
7 return f; } [5.b = £fib®-2); [F\

|6.f=a+b;|é) ,’l

recursive

Terminals are node numbers .
O, 1, 2, 3, 4, 5, 6, 7 llun-r(‘('urai\';\\\

return

~ ~ = Teturns

o

Variables represent “all possible
paths following from that node”
T,ABCDERG

APC-R: Code — Control Flow Graph — Grammar
T

0. int fib(int n){

1 int f;

2 if (n < 2)

3. f=1;

4. else {int a = fib(n - 1)
5 int b = fib(n - 2)
6 f=a+b; }

7 return f; }

Terminals are node numbers
0,12 3,4,5,6,7

Variables represent “all possible
paths following from that node”

LABCDERG

Mmoo MN W@ > -
NN N AN R R R N 7

- ~
non-recursive < -

0A
1B
2C
3D | 4E

T5F
T6G

APC-R: Code — Control Flow Graph — Grammar
T

0. int fib(int n){

1 int f;

2 if (n < 2)

3. f=1;

4. else {int a = fib(n - 1)
5 int b = fib(n - 2)
6 f=a+b; }

7 return f; }

Terminals are node numbers
0,12 3,4,5,6,7

Variables represent “all possible
paths following from that node”

LABCDERG

M MmMmoOoMN W > -
NN N AN R R R R %

- ~
non-recursive < -

0A
1B

2C

3D | 4E
7

T5F

T6G

7

APC-R: Code — Control Flow Graph — Grammar
T

0. int fib(int n){

1 int f;

2 if (n < 2)

3. f=1;

4. else {int a = fib(n - 1)
5 int b = fib(n - 2)
6 f=a+b; }

7 return f; }

Terminals are node numbers
0,12 3,4,5,6,7

Variables represent “all possible
paths following from that node”

LABCDERG

Mmoo MN W@> -
NN N N RN RN N R

- ~
non-recursive < -

0A
1B
2C
3D | 4E

T5F
T6G

APC-R: Code — Control Flow Graph — Grammar
T

0. int fib(int n){

1 int f;

2 if (n < 2)

3. f=1;

4. else {int a = fib(n - 1)
5 int b = fib(n - 2)
6 f=a+b; }

7 return f; }

Terminals are node numbers
0,12 3,4,5,6,7

Variables represent “all possible
paths following from that node”

LABCDERG

Mmoo MN W@ > -
NN N AN R R R N 7

- ~
non-recursive < -

0A
1B
2C
3D | 4E

T5F
T6G

APC-R: Code — Control Flow Graph — Grammar
T

0. int fib(int n){ ALo- v | T > 0A

v Blimee] . A > 1B

3. f=1; ‘l"('("ll\l'hi\'(‘ B - 2C

4. else {int a = fib(n - 1); C "*\‘”*E y C > 3D | LE

5 int b = fib(n - 2); A

6 f=a+b:) D[3- =t |4.a=f1b(n-1);|‘ll D > 7

7 return f; } |5.b=fib(i-2); |A=\ E > T5F
| Y IG \ F > T6G
6.f=a+b;((g

Strings From Graommar = Code Executions recursive G~>7

@1 237 1.11)11-?'(~('111‘>i\'1\‘ W e

01240123750123767

01240124012375012376750123767
01240123750124012375012376767

Path Complexity from Graommar

0. fib(n)

recursive
calls
\
1

[4. 2 = fib(a-1); | :
Yy %
|s. b = fib(n-2); [
¥ \

6.£=a+b;| \) 2

\

recursive

7. return f; [.= returns

~

non-recursive ~ < _
return B

Control Flow Graph

AOOmMmMmMmoMN >
NN N AN N R R N 2

Grammar

System of
Equations

Path Complexity from Graommar

0. fib(n)

recursive

calls

1 \l

[4. a = fib(n-l);| .
v V!

|5. b = fib(n-2); [

+ \ \1

6. £=a+b;| |/

recursive

7. return f; [.= returns

~

non-recursive -~

o

return

Control Flow Graph

1B Chomsky-
Schutzenberger

2C theorem

3D | 4E . >

AOOmMmMmMmoMN >
NN N AN N R R N 2

Grammar

System of
Equations

Path Complexity from Graommar

0. fib(n)

recursive

calls

1 \,

|4. a = fib(n-l);| ,
v V!

[5. b = fib(n-2); [

+ \ \1

6. £=a+b;| |/

recursive

7. return f; [.= returns

~

non-recursive -~

o

return

Control Flow Graph

AOOmMmMmMmoMN >
NN N AN N R R N 2

Grammar

Chomsky-

Schutzenberger

theorem

D

d
v
I

System of
Equations

Path Complexity from Graommar

0. fib(n)

recursive
calls
\
1

[4. 2 = fib(a-1); | :
Yy %
|s. b = fib(n-2); [
¥ \

6.£=a+b;| \) 2

\

recursive

7. return f; [.= returns

~

non-recursive ~ < _
return B

Control Flow Graph

AOOmMmMmMmoMN >
NN N AN N R R N 2
~

Grammar

Chomsky-

Schutzenberger

theorem

d
v
I

D

= Bz
= Cz
Dz + Ez

= TFz
= TGz

AOOmMmMmMmoMN > -
11

System of
Equations

Path Complexity from Graommar

Bz
Cz
Dz + Ez

TFz
TGz

OOmMmMmMmoMNW@> -

Path Complexity from Graommar

Eliminate Variables to Isolate T
Az 2+ 2T - T =0
Bz
Cz
Dz + Ez

TFz
TGz

OOmMmMmMmoMNW@> -

Path Complexity from Graommar

OOmMmMmMmoMNW@> -

Bz
Cz
Dz + Ez

TFz
TGz

Eliminate Variables to Isolate T

22+ 2T - T =0

Compute Discriminant
1 - 4z'%2 =9

Qn

Disc(p) =
agp 0
al ag
a ay
Res(p, q) =
aq Qd-—1 T
0 aq
0o 0

(_1)71(71—1)/2

o oo

Path Complexity from Graommar

OOmMmMmMmoMNW@> -

Bz
Cz
Dz + Ez

TFz
TGz

Eliminate Variables to Isolate T
2>+ 2T - T =0
Compute Discriminant

1 - 4212 =9

Compute Roots
41/12g k176 for ko= 1.12

Qn

Disc(p) =
agp 0
al ag
a ay
Res(p,q) =
aq Qd-—1 T
0 ag
0o 0

(_1)71(71—1)/2

o oo

e ag—1

ad

Path Complexity from Graommar

OOmMmMmMmoMNW@> -

Bz
Cz
Dz + Ez

TFz
TGz

Eliminate Variables to Isolate T

25+ 2’72 - T =0
Compute Discriminant
1 - 4z'%2 =9

Compute Roots
4112 kM 1/6 fop g = 1.12

Asymptotic Path Complexity
APC-R = 412 = 1,127

(_1)71(71—1)/2

Disc(p) = Res
an
aqp 0 0 b()
ax ag 0 by
a ay 0 b
. : ag :
Res(p, q) = :
ag Qg1 : be b,
0 aq 0
. aqg—1 -
0 0 ad 0
D m;—1
f(n) = E E cign’ <

Naive Interprocedural APC

N -IP

|deal Use APC-R for Interprocedural Codel

|deally, we could just apply the same principles from APC-R directly to
interprocedural code,

We call this approach

N -IP
V2R N

Naive Inter-Procedural

NAPC-IP intuition

bool is_even(int n){
if (n == @) return true;
else return is_odd(n - 1);

bool is_odd(int n){
if (n == @) return false;
else return is_even(n - 1);

NAPC-IP intuition

Need to distinguish
between functions

Add an extra subscript to
each node label

Treat interprocedural calls
just like recursive calls

Now solve for TO

/ is_even(n)
ol
”
7
P%
7
/
I
|
|
\ @ @ is_odd(n) \\

NAPC-IP intuition

e Apply APC-R algorithms -

System @ (is_even) System 1 (is_odd)

0 = Vo X =V, o
=Vx+V®2x =Vx+Vlzx

T,
Va0 0,1 V1o 1,1
Vor = Vo o* Vig =V
Vs V)
Vs V)

is_even(n)

~

o =TV, TV, x
1 1

NAPC-IP intuition

Apply APC-R algorithms

System @ (is_even) System 1 (is_odd)
Ty =V, & T, =V, &

Voo = Vo8 t VX Vie = Vl L
Vor = Vo o* Vig =V

Vo, = TiVy ¥ Vi, = TV

V0,3 =1 V1’3 =1

Use APC-R solving techniques
APC for is_even is O(n/3)

/ is_even(n)

ol

”

s

P%

7

/
I
|
‘ \
\ is_odd(n) \

NAPC-IP intuition

e Apply APC-R algorithms

System @ (is_even)

T, =V, &

Voo = Vo8 t VX
Vor = Vo o*

Vo, = TiVy ¥

V0,3 =1

e Use APC-R solving techniques .
APC for is_even is O(n/3)

System 1 (is_odd) /

Tl = VLM /// @

V1,@ = V1,1x + Vl,zx /

V1,1 = V1,3x {\ @

Vi, = TV \

v R
N
N

Eliminate Variables to Isolate T
2°+2'T*-T=0

Compute Discriminant
1-4z2=0

Compute Roots

4H12g kmil6 or g =1..12

Asymptotic Path Complexity
APC-R = 4"2=112"

R G Vi d
isc(p) o Res(pgp
0 0

minutes ago

D mi=1 1y
F) =3 3" eign? (m>
= = i

Same math from 2

is_even(n)

It works! But there is a problem!

— . . . _1\n(n—1)/2
X = Zg Eliminate Variables to Isolate T D= O (p. lﬂp)
= Z an ax
B = zC 2>+ 27T° - T =0 a 0 0 b O
C = 7D+7E . . . ar aop 0 bi bo
D = z Compute Discriminant A 4 -
E = zTF 12 Res(p.q)=| ”
1 - 42 = @ aq aqg—1 e—1
F = zTG | !
— 0 aq 0 b
G =2z Compute Roots :
. 0 0 aq 0 0
41/12kn1/6 £op ko= 1,12
. . D m;—1 n
Asymptotic Path Complexity =YY" e <|1|)
— 7.1

RAPC = 4"/12 = 1 120

If there are even only a few interprocedural and recursive calls, system of
equations is too large, METRINOME explodes and runs out of time and memory

Optimizations

Optimization 1: Better Combinatorial Analysis

Before

Compute APC using

directly straightforward analytic
combinatorics

D m;—1 n
- J
=33 g, ()
z

i=1 =0

Slow!

Optimization 1: Better Combinatorial Analysis

Before After
Compute APC using Compute APC using
directly straightforward analytic Generalized Expansion Theorem for
combinatorics Rational Generating Functions
D m;—1 n
=3 > et () GETRGF

i=1 =0

Slow! Fastl

General Expansion Theorem for Rational
Generating Functions (GETRGF)

If g(z) = P(x)/Q(x), where Q(z) = qo(1 — p12)* (1 — poz)® ... (1 — psx)% and
the numbers (p1, p2,-..,p:) are distinct, and if P(zx) is a polynomial of degree
less than di +da + . .. + dy, then [z"]|g(z) = fi(n)p} + f2(n)pd + ...+ fi(n)p},
where each fr(n) is a polynomial of degree dy, — 1 with leading coefficient

P(1/pk)

ar = =%
(dr —1)!q0 Hj;ek(l — pi/pK)%

Intuition: we only need to compute a small number of
coefficients to determine the highest order term for APC.

Optimization 1: Better Combinatorial Analysis

Full details in the paper!

Interprocedural Path Complexity Analysis

1 INTRODUCTION

CCS CONCEPTS

— Generating functions

KEYWORDS

Algorithm 7 GETRGF (g(x))

5

—_
O

12

13:
14:

LET

g(x) = Pl

Q(x)
if (deg(P(x)) > deg(Q(x))) then
P(x) « R(x) where > Make deg(P(x)) < deg(Q(x))

R(x) ¢ remainder of P(x)/Q(x)
r « Roots(Q(x))
p < inverses of the roots in r
Puax < maximum magnitude of all the p
m <« maximum multiplicity among the p such that |p;| = puax
Pk < any p with magnitude pyax and multiplicity m
qo < constant term for Q(x)

: for each py do > Compute with GETRGF Theorem

. PQ/pi) |
(m—1)!q0 I_[j;tk(l _Pj/Pk)m

return APC > Return asymptotic path complexity

Optimization 1: Replacing theoretical steps

code
Before |
We computed path complexity control flow
with Taylor expansions of the graph (CFG)
generating function yielding the l
number of paths. .
generating
function
D m;-1
path(n)—z Z ci jn’ (r) l
1
path

complexity

Optimization 1: Replacing theoretical steps

Before After

We computed path complexity
with Taylor expansions of the

generating function yielding the
number of paths.

New method is bounded by the
roots of Q)(x).

GETRGF

D ml_l

path(n) = Z Z ci jn’ (ri)

i=0 j=0

Optimization 1: Replacing theoretical steps

1 2 8

Create rootsDict ={(r_i : d_i)} If deg(P (x)) > deg(Q (x)), replace Create rhoDict
where r_i is a root of Q (x) P(X) with polynomial division ={(pi = 1/ri: di)
and d_i is its multiplicity remainder of P (x)/Q (x). v ri € rootsDict.

Compute the dominant term in

[xn 1g(x) with c being the ‘ Compute ak for each Create set S with all pi with the

summation of all ak pk € S using the maximum magnitude, pmax, in
VA (e A e GETRGF formula. rhoDict and maxium multiplicity.

Optimization 1: Replacing theoretical steps

Before After

. _ P(1/pk)
ath complexity = c-n™ 1. |p|" ap =
path complezity ! (m = Do [T (L — 3/ P0)"

P is the inverse of the root of Q(x) with the

smallest magnitude qo is the constant term of Q(x)

m is the maximum multiplicity of the roots Pk are the inverses of the roots with the same
among those with minimum magnitude maghnitude and multiplicity as p

C is the sum of the ag, shown at right Pj are all the distinct roots

Optimization 2: Careful “Chunking” of Systems of Equations

e APC-R treats this as one big system

System @ (is_even)

w N

Vo o8

= Vo &tV X

= Vo o*
= TV,

1

System 1 (is_odd)

/
a0
=V x+Vlzx /

.3 a is_even(n)
ol
”
s
P%
7
/

1,1

|
& B
TV, x \

1 \

Optimization 2: Careful “Chunking” of Systems of Equations

e APC-R treats this as one big system s_even

System @ (is_even) System 1 (is_odd)

Ty =7V, T, =V, & // @

Voo = Vo8 t VX Vie =Vt V) x /

Vor = Vo o* Vig =V {

Vo, = TiVy ¥ Vi, = TV \ @ @ a
Voy = 1 Vi, =1 \

APC-IP will instead ‘
e reduce each sub-system as much P
as possible
e Solve while carefully respecting

coupling variables (e.9. V5 V., T)

Full details in the paper!

Interprocedural Path Complexity Analysis

Mira Kaniyur Ana Cavalcante-Studart Yihan Yang

Harvey Mudd College Harvey Mudd C
Claremont, USA Claremont, US

mkaniyur@hme edu

Harvey Mudd College
Claremont, USA

Sangeon Park David Chen Duy Lam
Harvey Mudd College Harvey Mudd College Harvey Mudd College
Claremont, USA Claremont, USA Claremont, USA

sangpark@hme.edu

Lucas Bang
Harvey Mudd College
Claremont, USA
bang(@cs hmeedu

ABSTRACT

1 INTRODUCTION

challenges with path explosion. Asymptotic Path Complexity (APC)
quantifis this path explosion complexity. but existing APC meth
ods do not wark for interprocedural functions in general. Our new
algorithm, APC-IP, efficiently computes APC for 3 wider range of
functions, previous

coverage to increase canfidence in software correctness. However,
for automated software testing appeoaches like symbolic execution
[.5.14)

‘methods in bath speed and scope. We implement APC-IP atop the
existing software Metrinome, and test it against a benchmark of C
functions, comparng it o existing and baseline appeoaches a5 well
as comparing it to the path explosion of the symbolic execution
engine Kice. The results show that APC-IP not only aligns with
previous APC values but also excels in performance, scalability, and
handling complex source code. I also peovides a complexity peedic
tian of the number of paths exploced by Klee, extending the APC
‘metric’s applicability and

of achieving path coverage. Previous work (2] has demonstrated
that asymptotic path complexity is a more accurste and refined
metric to measure code complexity than other commen complexity
‘metrics such as cyclomatic [16] oe NPATH [17] complexity. Further,
it has been shown that asymptotic path complexity (APC) i useful
in the context of automated software testing | oviding an
upper bound on the growth rate of paths explored by a popalar
symbolic execution software such as Kuzx [6]. In earfier works,

CCS CONCEPTS

sis, including functions that make no recurséve calls or make oaly
self-recursive calls [3, 19). In this paper. we extend and optimize
the (APC) metric to messure the com

plexity of We give a new APC algorithm,

— Generating functions

KEYWORDS
Code Complexity. Path Explosion, Testing Complexity
ACM Reference Format:

APCIP. able to compute path complexity for interprocedaral fiunc
tions. which subsumes prior approaches and is significantly mote
Je. Our APC-IP is an algorithm that computes the asymptotic
of 4 de. APC:
IP thus provides a way o quickly predict the difculty of automatic
test generation for intraprocedural and interprocedural code.
Contributions. We claim the following research contributions
APC-IP Formalization. Extension of the theory and algorithms es-
tablished for APC to account for interprocedural functions.
Optimization Over ANl Previous APC Appruaches Replacing theoreti
cal steps in previous algorithms to smprove performance for both
code.

APC-IP Implementation. Implementing APC-IP atop Meramons.
an existing APC analysis tool.

flidation Verification that APC-IP gives an
accurate APC for both intraprocedural and interprocedural, and
i the fastest optian to process complex source codea. APC-IP is
predictoe of path explosion in symbolic exccution experiments.

Optimization 2: Careful “Chunking” of Systems of Equations

Algorithm 5 ELIMINATE-OPTIMIZED (Systems S, Vars V)

: for each i € len(S) do

3 5250,51,...,5,1

=)

> Solve each system for T;
d « substitution dictionary for eliminating

d = {{Vk : all eqns containing Vi } VVi € S;}

T « add PArRTIAL-ELIMINATE(S;, V;, d)

: d={T; : {all eqns € T containing T; } }
T 0= {TO,Tls---,Tn}
: return PARTIAL-ELIMINATE(T, v, d)

> Variables for eliminating T's
> Solve T's for Ty

Algorithm 6 PARTIAL-ELIMINATE (sys s, vars v, dict d)

e
Wi R 9

—_
'S

0PN D AW N

: if len(s) = 1 then

return s[0] >Return T; = A

: var = 9[—1] « var to eliminate

: eqn = s[—1] « eqn of form var = A
: sub « right side of eqn, equal to var
: if var € sub then

> Must solve for var
for each eq € d[var] s.t. eq in bounds do
sub = solve(eq, var)
if len(sub) = 1 then
break

> Unique solution for var

: for each eq € d[var] do

eq « substitute var with sub
d « update dict d after substitution

: return PARTIAL-ELIMINATE(s[: —1], 0[: —1],d)

Takeaways for APC-IP
e More advanced combinatorial analysis of grammar using
GETRGF

e More sophisticated solving for systems of coupled
equations

e Same path complexity results as APC-R, but faster!

-xperiments

Experimental Overview

Benchmark Functions
APC (recursive, interprocedural, naive interprocedural)

Overall result
APC and KLEE

Benchmark Functions

Benchmark Functions

e /6 well known C algorithms found in
https://github.com/TheAlgorithms/C repository

o Contains non-recursive, recursive, and interprocedural functions
o Combination of straight line code, nested conditions, loops

e 3running examples

Benchmark Functions

e /6 well known C algorithms found in
https://github.com/TheAlgorithms/C repository

o Contains non-recursive, recursive, and interprocedural functions
o Combination of straight line code, nested conditions, loops

e 3running examples

/9 functions

APC

e APC-R: able to perform non recursive and recursive APC analysis
on single functions

e NAPC-IP: APC-R with minimal modification (relabel variables) to
handle interprocedural code

e APC-IP: fully interprocedural and optimized APC

APC: Result

e For 42 non-interprocedural functions, APC-R = NAPC-|P = APC-IP
e For 3/ interprocedural functions, NAPC-IP = APC-IP
e But APC-IPis FASTERI

o Majority run < 1seconds
o Most run <5 seconds
o 3 outliers ~100 seconds

Overall result: APC-R vs APC-IP

e 42 non-interprocedural code
o APC-IP is faster in 32 cases, in S cases APC-|P is more than 100
times faster than APC-R
o EX: bubble sort: >200s — 0.63s.
e When APC-IP is slower than APC-R, both are less than 1 second

Overall result: NAPC-IP vs APC-IP

e /9 functions
o APC-IP is faster in 65 cases, in 16 cases APC-|P is 100 times faster
than NAPC-IP
o EX:Heap sort; >6000s — 4.1s
e When APC-IP is slower, it is still <1 second

KLEE Data: Curve Fitting

Number of paths explored for increasing depth

binary_search_rec_normal: exp

Number of Completed Paths

400

300

200

100

10
Depth

20

MSEs
® data

exp 106.762

linear_search_rec_normal: linear

wn
-
& MSEs
T 20 e data
o linear 0.000
74 = -
=
S 10
t—
o
@
el
E 0
3
& 0 10 20
Depth

Results: APC and KLEE

e Ran KLEE on 57/79 functions.
e APC-IP successfully predicts the upper bound on KLEE's path

explosion, even for interprocedural functionsl!
e Detailed data in the PAPER.

Table 4: APC and KLEE data on C files showing APC-IP and
best fit curve for KLEE path explosion.

APC KLEE

Index | Function APC-IP APCIP Best Fit APC-IP KLEE

Time(s) Time(s)
1 Even-Odd § n/3 0.144 n yes 24.95
2 GCD T n/3 0.223 n yes 2.58
3 Floyd Alg. § 0.125 * n? 0.635 9.58 * 1.06™ | no, but close 34.06
4 Catalan § n3 0.272 n upper bound 215.5
5 Fib. Search 2.33 % 1.227 0.88 5.71 % 1.28™ yes 63.69
6 Bead Sort 0.37 * 1.30™ 4.91 1.90 * 1.547 yes 23.31
7 Fib. (R) T 1.347 0.123 n upper bound | 1682.06

§ represents that the source code is interprocedural.
T This version of the function is implemented recursively.

Results: APC and KLEE

e Ran KLEE on 57 functions.
e 46 functions, APC-IP is in the same complexity class as KLEE's best

fitline
o KLEE bound exploration by branch count, while APC-IP is by edge count in CFG

e O3 APC-IP bound KLEE best fit line
e 3 cases we don't have enough data for the best fit line

e 1case where KLEE is exponential but APC-IP is quadratic
o Suspect this is due to overfitting

Conclusion

PC- PC-

simple pe€ursivagcode InterpfOce | code,

% % but very SLOW

APC-IP }

Conclusion

PC- PC-
simple pe€ursivacode InterpfOce | code,
% % but very SLOW

=

Conclusion

PC-
simple ge€ursivagcode Interpfoce | code,
% but very SLOW

N
-
e

Interprocedurall

Conclusion

PC-
simple ge€ursivagcode Interpfoce | code,
% % but very SLOW
-

o

Interprocedurall

Conclusion

PC-
simple ge€ursivagcode Interpfoce | code,

N T
-
o

Interprocedurall

Conclusion

e APC-IP provides a sound upper bound on the degree of KLEE's
path explosion when testing simple, recursive, or
interprocedural programs.

e Forintraprocedural functions, APC-IP = APC-R and FASTER!

e Forinterprocedural functions, APC-IP can computes correct
APC usually in under 5 seconds.

e APC-IP subsumes earlier APC, and with drastic improvements
on performance cost.

Future Work

e [Done/Test stage] Expand APC to process programs in more
common programming languages, such as Python and Java.

e [To do] Continuing to scale APC to meet the scale of today'’s
industry code-bases.

Taokeaways

Path Complexity

Asymptotic upper bound on the

number of paths in control flow
graph from start to exit

up to a given execution depth.

APC-IP (Interprocedural Asymptotic Path Complexity)

APC-IP earlier APC work

e produces the same results on the simpler benchmarks

APC-IP earlier APC work

e handles fully interprocedural code, unlike previous work

APC-IP outperforms earlier APC work

e much faster when it matters

APC-IP predicts symbolic execution explosion rate
e upper bound on execution paths explored by KLEE

Thank youl

‘ Asymptotic
I Metrinome) Poth Complexity

v O(f (depth))

https://github.com/hmc-alpaga/metrinome

Ablation Study

Optimization 1: Effects of GETRGF on the runtime
e FEuclidean algorithm: 64.56s — 0.06s
Optimization 2: Effects of “chunking” systems of equations

e Heap sort: >6000s — 1.88s

e When Naive is fast (< 1s), Optimized is not as fast but still < 1s

e When Naive explode (>100 s), Optimized can be up to 1000 times
faster, still in 1-2s range

Takeaway: APC-IP performs much better for complex functions!

Conclusion and Future

e APC can be accurately calculated in Metrinome
e KLEE behavior can be predicted by Metrinome
e Next Steps

o Further experimental validation
o More robust numerical computing (e.g. fix APC computation for mergesort)
o Implement full interprocedural analysis

Metrinome

v https://github.com/hmc-alpaga/metrinome

