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APC-IP (Interprocedural Asymptotic Path Complexity)

APC-IP subsumes earlier APC work
● produces the same results on the simpler benchmarks 

APC-IP extends earlier APC work 
● handles ÿully interprocedural code, unlike previous work

APC-IP outperÿorms earlier APC work
● much ÿaster when it matters

APC-IP predicts symbolic execution explosion rate
● upper bound on execution paths explored by KLEE
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Path Complexity

Asymptotic upper bound on the 

number oÿ paths in control flow 
Āraph ÿrom start to exit 

parameterized by execution depth.
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Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree

Execution LenĀth

Number oÿ paths at this lenĀth
2(length + 1)/3  = O(1.26length)



APC with Recursive Functions 

APC-R 
(FormaliSE 2023)



APC-R: Code → Control Flow Graph → Grammar
0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
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Path Complexity ÿrom Grammar 
Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0

Asymptotic Path Complexity
APC-R =  4n/12 = 1.12n

Compute Discriminant
 1 - 4z12 = 0

Compute Roots
 41/12e k π i / 6 for k = 1…12

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z
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Idea! Use APC-R ÿor Interprocedural Code!
Ideally, we could just apply the same principles ÿrom APC-R directly to 
interprocedural code. 

We call this approach Naive Interprocedural Asymptotic Path Complexity 

NAPC-IP
Naive Inter-ProceduralAsymptotic Path 

Complexity 



NAPC-IP intuition



NAPC-IP intuition
● Need to distinĀuish 

between ÿunctions
● Add an extra subscript to 

each node label

● Now solve ÿor T0 

● Treat interprocedural calls 
just like recursive calls
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● Use APC-R solvinĀ techniques 
APC ÿor is_even is O(n/3) 

Same math ÿrom 2 
minutes aĀo
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It works! But there is a problem! 
 T = zA
 A = zB
 B = zC
 C = zD+zE
 D = z
 E = zTF
 F = zTG
 G = z

Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0

Asymptotic Path Complexity
 RAPC =  4n/12 = 1.12n

Compute Discriminant
 1 - 4z12 = 0

Compute Roots
 41/12ekπi/6 for k = 1…12

Iÿ there are even only a ÿew interprocedural and recursive calls, system oÿ 
equations is too larĀe, METRINOME explodes and runs out oÿ time and memory



Optimizations
APC-IP
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Compute APC usinĀ 

Generalized Expansion Theorem ÿor 
Rational GeneratinĀ Functions 

Slow! Fast!



General Expansion Theorem ÿor Rational 
GeneratinĀ Functions (GETRGF)

Intuition: we only need to compute a small number oÿ 
coefficients to determine the hiĀhest order term ÿor APC. 



Optimization 1: Better Combinatorial Analysis
Full details in the paper!
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Optimization 1: Replacing theoretical steps

We computed path complexity 
with Taylor expansions oÿ the 
ĀeneratinĀ ÿunction yieldinĀ the 
number oÿ paths .

Beÿore
New method is bounded by the 
roots oÿ Q(x).

Aÿter

GETRGF
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Beÿore Aÿter



Optimization 2: Careÿul “ChunkinĀ” oÿ Systems oÿ Equations 
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APC-IP will instead
● reduce each sub-system as much 

as possible
● Solve while careÿully respectinĀ 

couplinĀ variables (e.Ā. V1,3, V0,2, T1)  



Optimization 2: Careÿul “ChunkinĀ” oÿ Systems oÿ Equations 

Full details in the paper!



Takeaways ÿor APC-IP

● More advanced combinatorial analysis oÿ Ārammar usinĀ 
GETRGF

● More sophisticated solvinĀ ÿor systems oÿ coupled 
equations 

● Same path complexity results as APC-R, but ÿaster!



Experiments



Experimental Overview
● Benchmark Functions
● APC (recursive, interprocedural, naive interprocedural)
● Overall result
● APC and KLEE
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Benchmark Functions
● 76 well known C alĀorithms ÿound in 

https://Āithub.com/TheAlĀorithms/C repository
○ Contains non-recursive, recursive, and interprocedural ÿunctions
○ Combination oÿ straiĀht line code, nested conditions, loops

● 3 runninĀ examples
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79 ÿunctions



APC
● APC-R: able to perÿorm non recursive and recursive APC analysis 

on sinĀle ÿunctions

● NAPC-IP: APC-R with minimal modification (relabel variables) to 
handle interprocedural code

● APC-IP: ÿully interprocedural and optimized APC



APC: Result
● For 42 non-interprocedural ÿunctions, APC-R = NAPC-IP = APC-IP
● For 37 interprocedural ÿunctions, NAPC-IP = APC-IP
● But APC-IP is FASTER!

○ Majority run < 1 seconds
○ Most run <5 seconds
○ 3 outliers ~100 seconds



● 42 non-interprocedural code
● APC-IP is ÿaster in 32 cases, in 5 cases APC-IP is more than 100 

times ÿaster than APC-R
○ EX: bubble sort: >200s → 0.63s.

● When APC-IP is slower than APC-R, both are less than 1 second

Overall result: APC-R vs APC-IP



Overall result: NAPC-IP vs APC-IP
● 79 ÿunctions
● APC-IP is ÿaster in 65 cases, in 16 cases APC-IP is 100 times ÿaster 

than NAPC-IP
○ EX: Heap sort: >6000s → 4.1s

● When APC-IP is slower, it is still <1 second



KLEE Data: Curve FittinĀ
● Number oÿ paths explored ÿor increasinĀ depth



Results:  APC and KLEE
● Ran KLEE on 57/79 ÿunctions. 
● APC-IP successÿully predicts the upper bound on KLEE’s path 

explosion, even ÿor interprocedural ÿunctions!
● Detailed data in the PAPER. 



Results:  APC and KLEE
● Ran KLEE on 57 ÿunctions. 
● 46 ÿunctions, APC-IP is in the same complexity class as KLEE’s best 

fit line
○ KLEE bound exploration by branch count, while APC-IP is by edĀe count in CFG

● 53 APC-IP bound KLEE best fit line
● 3 cases we don’t have enouĀh data ÿor the best fit line
● 1 case where KLEE is exponential but APC-IP is quadratic

○ Suspect this is due to overfittinĀ 
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but very SLOW
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Conclusion
APC-R NAPC-IP

APC-IPsimple!

Recursive!

simple recursive code Interprocedural code, 
but very SLOW

Interprocedural!

Fast!

Predicts 
KLEE!



Conclusion
● APC-IP provides a sound upper bound on the deĀree oÿ KLEE’s 

path explosion when testinĀ simple, recursive, or 
interprocedural proĀrams. 

● For intraprocedural ÿunctions, APC-IP = APC-R and FASTER!
● For interprocedural ÿunctions, APC-IP can computes correct 

APC usually in under 5 seconds. 
● APC-IP subsumes earlier APC, and with drastic improvements 

on perÿormance cost.



Future Work
● [Done/Test staĀe] Expand APC to process proĀrams in more 

common proĀramminĀ lanĀuaĀes, such as Python and Java. 
● [To do] ContinuinĀ to scale APC to meet the scale oÿ today’s 

industry code-bases.



Takeaways 



Path Complexity

Asymptotic upper bound on the 

number oÿ paths in control flow 
Āraph ÿrom start to exit 

up to a Āiven execution depth.



APC-IP (Interprocedural Asymptotic Path Complexity)

APC-IP subsumes earlier APC work
● produces the same results on the simpler benchmarks 

APC-IP extends earlier APC work 
● handles ÿully interprocedural code, unlike previous work

APC-IP outperÿorms earlier APC work
● much ÿaster when it matters

APC-IP predicts symbolic execution explosion rate
● upper bound on execution paths explored by KLEE



Thank you!

https://Āithub.com/hmc-alpaqa/metrinome

Asymptotic 
Path Complexity
O( ÿ ( depth ) )



Ablation Study
Optimization 1: Effects oÿ GETRGF on the runtime 

● Euclidean alĀorithm: 54.5s → 0.06s

Optimization 2: Effects oÿ “chunkinĀ” systems oÿ equations

● Heap sort: >6000s → 1.88s
● When Naive is ÿast (< 1 s), Optimized is not as ÿast but still < 1s
● When Naive explode (>100 s), Optimized can be up to 1000 times 

ÿaster, still in 1-2s ranĀe

Takeaway: APC-IP perÿorms much better ÿor complex ÿunctions! 



Conclusion and Future
● APC can be accurately calculated in Metrinome
● KLEE behavior can be predicted by Metrinome
● Next Steps

○ Further experimental validation
○ More robust numerical computinĀ (e.Ā. fix APC computation ÿor merĀesort)
○ Implement ÿull interprocedural analysis 

https://github.com/hmc-alpaqa/metrinome


