
FormalizinĀ Path Explosion ÿor 
Interprocedural Functions

via Asymptotic Path Complexity
Ana Beatriz Studart, Mira Kaniyur, Yuki YanĀ, SanĀeon Park, Lucas BanĀ

Computer Science Department
Harvey Mudd ColleĀe

Claremont, Caliÿornia, USA



Motivation



Asymptotic Path Complexity Predicts the 
Severity oÿ Symbolic Execution Path Explosion



Symbolic Execution ?

Asymptotic Path Complexity Predicts the 
Severity oÿ Symbolic Execution Path Explosion



Symbolic Execution ?

Asymptotic Path Complexity Predicts the 
Severity oÿ Symbolic Execution Path Explosion



Symbolic Execution ?

Asymptotic 
Path Complexity
O( ÿ ( depth ) )

Asymptotic Path Complexity Predicts the 
Severity oÿ Symbolic Execution Path Explosion

Upper Bound



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

Asymptotic Path Complexity Predicts the 
Severity oÿ Symbolic Execution Path Explosion



BackĀround



TODO: Animate this slide

Symbolic Execution



depth

# 
pa

th
s

TODO: Animate this slide

Symbolic Execution



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

depth

# 
pa

th
s

TODO: Animate this slide

O(depth2)

Symbolic Execution



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

depth

# 
pa

th
s

TODO: Animate this slide

O(depth2)

Symbolic Execution



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

depth

# 
pa

th
s

O( ÿ ( depth ) )

TODO: Animate this slide

O(depth2)

O(depth2)

Symbolic Execution



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

ICSE 2021 depth

# 
pa

th
s

O( ÿ ( depth ) )

TODO: Animate this slide

FormaliSE 2023

Combinatorics oÿ
Context Free 
GrammarsIntraprocedural &

Selÿ-recursive only

Symbolic Execution



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

ICSE 2021 depth

# 
pa

th
s

O( ÿ ( depth ) )

TODO: Animate this slide

FormaliSE 2023

Combinatorics oÿ
Context Free 
GrammarsIntraprocedural &

Selÿ-recursive only

Asymptotic 
Path Complexity
O( ÿ ( depth ) )

ISSTA 2024

Symbolic Execution



Asymptotic 
Path Complexity
O( ÿ ( depth ) )

ICSE 2021 depth

# 
pa

th
s

O( ÿ ( depth ) )

TODO: Animate this slide

FormaliSE 2023

Combinatorics oÿ
Context Free 
GrammarsIntraprocedural &

Selÿ-recursive only

Asymptotic 
Path Complexity
O( ÿ ( depth ) )

ISSTA 2024

OPTIMIZED!
Combinatorics oÿ
Context Free 
Grammars

+ Fully interprocedural 
analysis

Symbolic Execution



APC-IP (Interprocedural Asymptotic Path Complexity)

APC-IP subsumes earlier APC work
● produces the same results on the simpler benchmarks 

APC-IP extends earlier APC work 
● handles ÿully interprocedural code, unlike previous work

APC-IP outperÿorms earlier APC work
● much ÿaster when it matters

APC-IP predicts symbolic execution explosion rate
● upper bound on execution paths explored by KLEE



What is Path Complexity?



Path Complexity

Asymptotic upper bound on the 

number oÿ paths in control flow 
Āraph ÿrom start to exit 

parameterized by execution depth.



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG)



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree

Execution LenĀth



Path Complexity Quantifies Path Explosion
Control Flow Graph (CFG) Symbolic Execution Tree

Execution LenĀth

Number oÿ paths at this lenĀth
2(length + 1)/3  = O(1.26length)



APC with Recursive Functions 

APC-R 
(FormaliSE 2023)



APC-R: Code → Control Flow Graph → Grammar
0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }



APC-R: Code → Control Flow Graph → Grammar
0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }



APC-R: Code → Control Flow Graph → Grammar
0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

Terminals are node numbers
0, 1, 2, 3, 4, 5, 6, 7



APC-R: Code → Control Flow Graph → Grammar
T

A
B

C

D
E

F
G

0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

Terminals are node numbers
0, 1, 2, 3, 4, 5, 6, 7

Variables represent “all possible 
paths ÿollowinĀ ÿrom that node”
T, A, B, C, D, E, F, G



APC-R: Code → Control Flow Graph → Grammar
T

A
B

C

D
E

F
G

0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

Terminals are node numbers
0, 1, 2, 3, 4, 5, 6, 7

Variables represent “all possible 
paths ÿollowinĀ ÿrom that node”
T, A, B, C, D, E, F, G

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7



APC-R: Code → Control Flow Graph → Grammar
T

A
B

C

D
E

F
G

0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

Terminals are node numbers
0, 1, 2, 3, 4, 5, 6, 7

Variables represent “all possible 
paths ÿollowinĀ ÿrom that node”
T, A, B, C, D, E, F, G

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7



T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7

T
A
B

C

D
E

F
G

0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

Terminals are node numbers
0, 1, 2, 3, 4, 5, 6, 7

Variables represent “all possible 
paths ÿollowinĀ ÿrom that node”
T, A, B, C, D, E, F, G

APC-R: Code → Control Flow Graph → Grammar



T
A
B

C

D
E

F
G

0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

Terminals are node numbers
0, 1, 2, 3, 4, 5, 6, 7

Variables represent “all possible 
paths ÿollowinĀ ÿrom that node”
T, A, B, C, D, E, F, G

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7

APC-R: Code → Control Flow Graph → Grammar



T
A
B

C

D
E

F
G

0. int fib(int n){
1.    int f;
2.    if (n < 2)
3.    f = 1;
4.    else {int a = fib(n - 1);
5.          int b = fib(n - 2);
6.          f = a + b; }
7.    return f; }

StrinĀs From Grammar ≅ Code Executions

01237
01240123750123767
01240124012375012376750123767
01240123750124012375012376767
…

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7

APC-R: Code → Control Flow Graph → Grammar



Path Complexity ÿrom Grammar 

Control Flow Graph Grammar
System oÿ 
Equations

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7



Path Complexity ÿrom Grammar 

Control Flow Graph Grammar
System oÿ 
Equations

Chomsky–
SchützenberĀer 

theorem

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7



Path Complexity ÿrom Grammar 

 T = A z
 A = B z
 B = C z
 C = D z + E z
 D = z
 E = T F z
 F = T G z
 G = z

Control Flow Graph Grammar
System oÿ 
Equations

Chomsky–
SchützenberĀer 

theorem

→  ↦  =
t  ↦  z
|  ↦  +

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7



Path Complexity ÿrom Grammar 

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z

T → 0A
A → 1B
B → 2C
C → 3D | 4E
D → 7
E → T5F
F → T6G
G → 7

Control Flow Graph Grammar
System oÿ 
Equations

Chomsky–
SchützenberĀer 

theorem

→  ↦  =
t  ↦  z
|  ↦  +



Path Complexity ÿrom Grammar 

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z



Path Complexity ÿrom Grammar 

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z

Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0



Path Complexity ÿrom Grammar 

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z

Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0

Compute Discriminant
 1 - 4z12 = 0



Path Complexity ÿrom Grammar 

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z

Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0

Compute Roots
 41/12e k π i / 6 for k = 1…12

Compute Discriminant
 1 - 4z12 = 0



Path Complexity ÿrom Grammar 
Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0

Asymptotic Path Complexity
APC-R =  4n/12 = 1.12n

Compute Discriminant
 1 - 4z12 = 0

Compute Roots
 41/12e k π i / 6 for k = 1…12

 T = Az
 A = Bz
 B = Cz
 C = Dz + Ez
 D = z
 E = TFz
 F = TGz
 G = z



Naive Interprocedural APC

NAPC-IP



Idea! Use APC-R ÿor Interprocedural Code!
Ideally, we could just apply the same principles ÿrom APC-R directly to 
interprocedural code. 

We call this approach Naive Interprocedural Asymptotic Path Complexity 

NAPC-IP
Naive Inter-ProceduralAsymptotic Path 

Complexity 



NAPC-IP intuition



NAPC-IP intuition
● Need to distinĀuish 

between ÿunctions
● Add an extra subscript to 

each node label

● Now solve ÿor T0 

● Treat interprocedural calls 
just like recursive calls



NAPC-IP intuition
● Apply APC-R alĀorithms 

System 0 (is_even)
𝑇0 = 𝑉0,0𝑥
𝑉0,0 = 𝑉0,1𝑥 + 𝑉0,2𝑥 
𝑉0,1 = 𝑉0,3𝑥
𝑉0,2 = 𝑇1𝑉0,3𝑥
𝑉0,3 = 1

System 1 (is_odd) 
𝑇1 = 𝑉1,0𝑥
𝑉1,0 = 𝑉1,1𝑥 + 𝑉1,2𝑥 
𝑉1,1 = 𝑉1,3𝑥
𝑉1,2 = 𝑇0𝑉1,3𝑥 
𝑉1,3 = 1



NAPC-IP intuition
● Apply APC-R alĀorithms 

● Use APC-R solvinĀ techniques 
APC ÿor is_even is O(n/3) 

System 0 (is_even)
𝑇0 = 𝑉0,0𝑥
𝑉0,0 = 𝑉0,1𝑥 + 𝑉0,2𝑥 
𝑉0,1 = 𝑉0,3𝑥
𝑉0,2 = 𝑇1𝑉0,3𝑥
𝑉0,3 = 1

System 1 (is_odd) 
𝑇1 = 𝑉1,0𝑥
𝑉1,0 = 𝑉1,1𝑥 + 𝑉1,2𝑥 
𝑉1,1 = 𝑉1,3𝑥
𝑉1,2 = 𝑇0𝑉1,3𝑥 
𝑉1,3 = 1



NAPC-IP intuition
● Apply APC-R alĀorithms 

● Use APC-R solvinĀ techniques 
APC ÿor is_even is O(n/3) 

Same math ÿrom 2 
minutes aĀo

System 0 (is_even)
𝑇0 = 𝑉0,0𝑥
𝑉0,0 = 𝑉0,1𝑥 + 𝑉0,2𝑥 
𝑉0,1 = 𝑉0,3𝑥
𝑉0,2 = 𝑇1𝑉0,3𝑥
𝑉0,3 = 1

System 1 (is_odd) 
𝑇1 = 𝑉1,0𝑥
𝑉1,0 = 𝑉1,1𝑥 + 𝑉1,2𝑥 
𝑉1,1 = 𝑉1,3𝑥
𝑉1,2 = 𝑇0𝑉1,3𝑥 
𝑉1,3 = 1



It works! But there is a problem! 
 T = zA
 A = zB
 B = zC
 C = zD+zE
 D = z
 E = zTF
 F = zTG
 G = z

Eliminate Variables to Isolate T
 z5 + z7T2 - T = 0

Asymptotic Path Complexity
 RAPC =  4n/12 = 1.12n

Compute Discriminant
 1 - 4z12 = 0

Compute Roots
 41/12ekπi/6 for k = 1…12

Iÿ there are even only a ÿew interprocedural and recursive calls, system oÿ 
equations is too larĀe, METRINOME explodes and runs out oÿ time and memory



Optimizations
APC-IP



Compute APC usinĀ 

directly straiĀhtÿorward analytic 
combinatorics 

Beÿore

Optimization 1: Better Combinatorial Analysis

Slow!



Compute APC usinĀ 

directly straiĀhtÿorward analytic 
combinatorics 

Beÿore

Optimization 1: Better Combinatorial Analysis

GETRGF

Aÿter
Compute APC usinĀ 

Generalized Expansion Theorem ÿor 
Rational GeneratinĀ Functions 

Slow! Fast!



General Expansion Theorem ÿor Rational 
GeneratinĀ Functions (GETRGF)

Intuition: we only need to compute a small number oÿ 
coefficients to determine the hiĀhest order term ÿor APC. 



Optimization 1: Better Combinatorial Analysis
Full details in the paper!



We computed path complexity 
with Taylor expansions oÿ the 
ĀeneratinĀ ÿunction yieldinĀ the 
number oÿ paths .

Beÿore

Optimization 1: Replacing theoretical steps



Optimization 1: Replacing theoretical steps

We computed path complexity 
with Taylor expansions oÿ the 
ĀeneratinĀ ÿunction yieldinĀ the 
number oÿ paths .

Beÿore
New method is bounded by the 
roots oÿ Q(x).

Aÿter

GETRGF



Optimization 1: Replacing theoretical steps



Optimization 1: Replacing theoretical steps

Beÿore Aÿter



Optimization 2: Careÿul “ChunkinĀ” oÿ Systems oÿ Equations 

● APC-R treats this as one biĀ system
System 0 (is_even)
𝑇0   = 𝑉0,0𝑥
𝑉0,0 = 𝑉0,1𝑥 + 𝑉0,2𝑥 
𝑉0,1 = 𝑉0,3𝑥
𝑉0,2 = 𝑇1𝑉0,3𝑥
𝑉0,3 = 1

System 1 (is_odd) 
𝑇1   = 𝑉1,0𝑥
𝑉1,0 = 𝑉1,1𝑥 + 𝑉1,2𝑥 
𝑉1,1 = 𝑉1,3𝑥
𝑉1,2 = 𝑇0𝑉1,3𝑥 
𝑉1,3 = 1



Optimization 2: Careÿul “ChunkinĀ” oÿ Systems oÿ Equations 

● APC-R treats this as one biĀ system
System 0 (is_even)
𝑇0   = 𝑉0,0𝑥
𝑉0,0 = 𝑉0,1𝑥 + 𝑉0,2𝑥 
𝑉0,1 = 𝑉0,3𝑥
𝑉0,2 = 𝑇1𝑉0,3𝑥
𝑉0,3 = 1

System 1 (is_odd) 
𝑇1   = 𝑉1,0𝑥
𝑉1,0 = 𝑉1,1𝑥 + 𝑉1,2𝑥 
𝑉1,1 = 𝑉1,3𝑥
𝑉1,2 = 𝑇0𝑉1,3𝑥 
𝑉1,3 = 1

APC-IP will instead
● reduce each sub-system as much 

as possible
● Solve while careÿully respectinĀ 

couplinĀ variables (e.Ā. V1,3, V0,2, T1)  



Optimization 2: Careÿul “ChunkinĀ” oÿ Systems oÿ Equations 

Full details in the paper!



Takeaways ÿor APC-IP

● More advanced combinatorial analysis oÿ Ārammar usinĀ 
GETRGF

● More sophisticated solvinĀ ÿor systems oÿ coupled 
equations 

● Same path complexity results as APC-R, but ÿaster!



Experiments



Experimental Overview
● Benchmark Functions
● APC (recursive, interprocedural, naive interprocedural)
● Overall result
● APC and KLEE



Benchmark Functions



Benchmark Functions
● 76 well known C alĀorithms ÿound in 

https://Āithub.com/TheAlĀorithms/C repository
○ Contains non-recursive, recursive, and interprocedural ÿunctions
○ Combination oÿ straiĀht line code, nested conditions, loops

● 3 runninĀ examples



Benchmark Functions
● 76 well known C alĀorithms ÿound in 

https://Āithub.com/TheAlĀorithms/C repository
○ Contains non-recursive, recursive, and interprocedural ÿunctions
○ Combination oÿ straiĀht line code, nested conditions, loops

● 3 runninĀ examples

79 ÿunctions



APC
● APC-R: able to perÿorm non recursive and recursive APC analysis 

on sinĀle ÿunctions

● NAPC-IP: APC-R with minimal modification (relabel variables) to 
handle interprocedural code

● APC-IP: ÿully interprocedural and optimized APC



APC: Result
● For 42 non-interprocedural ÿunctions, APC-R = NAPC-IP = APC-IP
● For 37 interprocedural ÿunctions, NAPC-IP = APC-IP
● But APC-IP is FASTER!

○ Majority run < 1 seconds
○ Most run <5 seconds
○ 3 outliers ~100 seconds



● 42 non-interprocedural code
● APC-IP is ÿaster in 32 cases, in 5 cases APC-IP is more than 100 

times ÿaster than APC-R
○ EX: bubble sort: >200s → 0.63s.

● When APC-IP is slower than APC-R, both are less than 1 second

Overall result: APC-R vs APC-IP



Overall result: NAPC-IP vs APC-IP
● 79 ÿunctions
● APC-IP is ÿaster in 65 cases, in 16 cases APC-IP is 100 times ÿaster 

than NAPC-IP
○ EX: Heap sort: >6000s → 4.1s

● When APC-IP is slower, it is still <1 second



KLEE Data: Curve FittinĀ
● Number oÿ paths explored ÿor increasinĀ depth



Results:  APC and KLEE
● Ran KLEE on 57/79 ÿunctions. 
● APC-IP successÿully predicts the upper bound on KLEE’s path 

explosion, even ÿor interprocedural ÿunctions!
● Detailed data in the PAPER. 



Results:  APC and KLEE
● Ran KLEE on 57 ÿunctions. 
● 46 ÿunctions, APC-IP is in the same complexity class as KLEE’s best 

fit line
○ KLEE bound exploration by branch count, while APC-IP is by edĀe count in CFG

● 53 APC-IP bound KLEE best fit line
● 3 cases we don’t have enouĀh data ÿor the best fit line
● 1 case where KLEE is exponential but APC-IP is quadratic

○ Suspect this is due to overfittinĀ 



Conclusion
APC-R NAPC-IP

APC-IP

simple recursive code Interprocedural code, 
but very SLOW



Conclusion
APC-R NAPC-IP

APC-IPsimple!

Recursive!

simple recursive code Interprocedural code, 
but very SLOW



Conclusion
APC-R NAPC-IP

APC-IPsimple!

Recursive!

simple recursive code Interprocedural code, 
but very SLOW

Interprocedural!



Conclusion
APC-R NAPC-IP

APC-IPsimple!

Recursive!

simple recursive code Interprocedural code, 
but very SLOW

Interprocedural!

Fast!



Conclusion
APC-R NAPC-IP

APC-IPsimple!

Recursive!

simple recursive code Interprocedural code, 
but very SLOW

Interprocedural!

Fast!

Predicts 
KLEE!



Conclusion
● APC-IP provides a sound upper bound on the deĀree oÿ KLEE’s 

path explosion when testinĀ simple, recursive, or 
interprocedural proĀrams. 

● For intraprocedural ÿunctions, APC-IP = APC-R and FASTER!
● For interprocedural ÿunctions, APC-IP can computes correct 

APC usually in under 5 seconds. 
● APC-IP subsumes earlier APC, and with drastic improvements 

on perÿormance cost.



Future Work
● [Done/Test staĀe] Expand APC to process proĀrams in more 

common proĀramminĀ lanĀuaĀes, such as Python and Java. 
● [To do] ContinuinĀ to scale APC to meet the scale oÿ today’s 

industry code-bases.



Takeaways 



Path Complexity

Asymptotic upper bound on the 

number oÿ paths in control flow 
Āraph ÿrom start to exit 

up to a Āiven execution depth.



APC-IP (Interprocedural Asymptotic Path Complexity)

APC-IP subsumes earlier APC work
● produces the same results on the simpler benchmarks 

APC-IP extends earlier APC work 
● handles ÿully interprocedural code, unlike previous work

APC-IP outperÿorms earlier APC work
● much ÿaster when it matters

APC-IP predicts symbolic execution explosion rate
● upper bound on execution paths explored by KLEE



Thank you!

https://Āithub.com/hmc-alpaqa/metrinome

Asymptotic 
Path Complexity
O( ÿ ( depth ) )



Ablation Study
Optimization 1: Effects oÿ GETRGF on the runtime 

● Euclidean alĀorithm: 54.5s → 0.06s

Optimization 2: Effects oÿ “chunkinĀ” systems oÿ equations

● Heap sort: >6000s → 1.88s
● When Naive is ÿast (< 1 s), Optimized is not as ÿast but still < 1s
● When Naive explode (>100 s), Optimized can be up to 1000 times 

ÿaster, still in 1-2s ranĀe

Takeaway: APC-IP perÿorms much better ÿor complex ÿunctions! 



Conclusion and Future
● APC can be accurately calculated in Metrinome
● KLEE behavior can be predicted by Metrinome
● Next Steps

○ Further experimental validation
○ More robust numerical computinĀ (e.Ā. fix APC computation ÿor merĀesort)
○ Implement ÿull interprocedural analysis 

https://github.com/hmc-alpaqa/metrinome


