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▪ Scientific computing is rapidly evolving. Some evolving trends
— Data compression FP formats to overcome cost of data movement in FP 

arithmetic
— Reduced & mixed precision or other exotic precision formats in next generation 

hardware & accelerators
— Parallelization on GPUs, FPGAs and shift towards heterogeneous architectures

▪ Need for next generation of numerical algorithms that takes into account all these 
aspects in order to meet the demands of applications on the evolving hardware

▪ For the case when these next gen algorithms are variants of existing algorithms
— How do we verify the correctness of their implementation for safe deployment?

Motivation
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▪ A solution: Prove the equivalence between the new variant and its classical 
counterpart

▪ Classical counterpart extensively studied in numerical analysis literature and serve as 
a ground truth for correctness of new variants

▪ Recent work: Equivalence between dense matrix-vector product & sparse matrix-
vector product with varying sparse matrix representations (LGTM framework 
@PLDI’24 : Gladshtein et al.)

▪ In this work, we prove equivalence between variants of a fundamental 
orthogonalization algorithm, Gram-Schmidt: Classical Gram-Schmidt and Modified 
Gram-Schmidt (more stable numerically)

Program equivalence
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▪ Gram-Schmidt is an orthogonalization algorithm: computes an orthogonal set of 
vectors

▪ Applications of orthogonalization algorithm
— Machine learning

• feature engineering through techniques like Principal component analysis
• Optimization and regularization
• Data compression, image processing and collaborative filtering through 

techniques like Singular Value Decomposition
— Cryptography: Lattice reduction techniques to optimize the basis of a lattice for 

better efficiency and security
— Signal processing: Noise reduction and multi-channel communication 
— …

Gram-Schmidt (GS) algorithm
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Research contribution

We extended the Mathcomp library in Coq to include basic linear algebra theorems
- Basis Theorem, dot product properties, definition of projections...

The linear algebra library is used to prove the properties of GS
- Finished the proof for CGS using this library

The library can be extended to floating point reasoning and error analysis.

Mathcomp: Assia Mahboubi, & Enrico Tassi. (2022). Mathematical Components (1.0.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7118596
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What is Gram-Schmidt Algorithm?

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛 
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.
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What is Gram-Schmidt Algorithm?

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛 
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.
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GS has Different Versions, CGS and MGS

math

CGS

- output vectors not perfectly 
orthogonal in floating points

- large rounding error
- Numerically unstable
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GS has Different Versions, CGS and MGS

math math

CGS MGS

- output vectors not perfectly 
orthogonal in floating points

- large rounding error
- Numerically unstable

- exact equivalence to CGS in 
real numbers

- small rounding error
- Numerically stable
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GS has Different Versions, CGS and MGS

math math

CGS MGS
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Loss of Orthogonality in CGS
▪ CGS loses orthogonality after a couple iteration (in floating points)

https://www.cis.upenn.edu/~cis6100/Gram-Schmidt-Bjorck.pdf

k: dimension

𝑄𝐶: orthogonal basis 
using CGS 𝑄𝑀: orthogonal basis 

using MGS

The error of CGS 
quickly diverges 
away from 0

𝜅: condition number: 
sensitivity of the output 
relative to errors in the input
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Goal
▪ Prove CGS and MGS with the goal of proving stability and convergence
▪ Proving equivalence (both in reals and in floats) between different 

variants of linear algebra algorithms. 
▪ Prove actual programs → need computable definition

However...
▪ Isabelle/HOL

- Computable definition
- Target only CGS, did not include numerical stability
-  Only proved high level mathematical properties

▪ LEAN
- Use a non-computable definition of CGS

 - No MGS, no numerical stability

Our work provides formalization keeping in mind the numerical properties such as 
stability, numerical convergence, and floats in the long run.
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GS Specification

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛 
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.
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GS Specification

projections, dot product..

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛 
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.
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What is Mathcomp Missing? *Vector and Matrix are libraries in Mathcomp

Definitions Location in Mathcomp

vector Defined in Vector, implicit in Matrix

linear independence Defined in Vector as "free"

vector space/span Defined in Vector

projection Defined in Vector, but very limited and lack algebraic properties

Definitions Location in Mathcomp

dot product no explicit definition or properties

orthogonality Not defined

Orthogonal Decomposition Theorem Not defined

Basis Theorem Not defined

Mathcomp
have a lot of 
low-level 
definitions

Missing high 
level linear 
algebra 
theorems
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We used Mathcomp to created a library that can help us prove 
the GS theorem.

Definition r_vector := 'cV[R]_n.+1.

Definition vec_dot (v1 v2 : r_vector) : R :=
\sum_(i < n.+1) (v1 i 0) * (v2 i 0).

Definition projection (u v : r_vector) : r_vector :=
let uv := vec_dot u v in
let uu := norm u in
(uv/uu) *: u.

Definition ortho (a b : r_vector) := vec_dot a b == 0.

...

Key Takeaway:
- Add definitions and properties towards building a comprehensive 

linear algebra library
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Dependency Graph 1

We mechanized fundamental linear algebra theorems, including the Basis Theorem, the 
Orthogonal Decomposition Theorem (projs_ortho), and basic properties of vectors.
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Key Results – Theorem 1

Key Takeaway:
- Tweaked the specification a little to match its use case.
- When 𝑘 = 𝑚, this is the Orthogonal Decomposition Theorem.
- The proof requires both Mathcomp and our library.
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Dependency Graph 2

We used the linear algebra library to prove the correctness of CGS.
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Key Results – Theorem 2

▪ Independently devised the specification ▪ Stronger than what is in the textbook▪ Main helper lemma to prove CGS
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Key Results – Theorem 2

▪ Independently devised the specification ▪ Stronger than what is in the textbook▪ Main helper lemma to prove CGS

IH: For a certain 𝑘 ≤ 𝑚, {𝑢0, … , 𝑢𝑘−1} are all nonzero and pairwise 
orthogonal, and that 𝑠𝑝𝑎𝑛 𝑣0, . . , 𝑣𝑘−1 = 𝑠𝑝𝑎𝑛 (𝑢0, . . , 𝑢𝑘−1)
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Key Results – Theorem 2

IH:

𝑢𝑘 not zero 𝑢𝑘 orthogonal to 𝑢0...𝑢𝑘−1 𝑆𝑝𝑎𝑛(𝑣0, . . , 𝑣𝑘)  
=  𝑠𝑝𝑎𝑛(𝑢0, . . , 𝑢𝑘)

not in 
𝑠𝑝𝑎𝑛(𝑣0, . . , 𝑣𝑘−1)

in 
𝑠𝑝𝑎𝑛(𝑣0, . . , 𝑣𝑘−1)

use Orthogonal 
Decomposition 
Theorem

use Basis Theorem

For a certain 𝑘 ≤ 𝑚, {𝑢0, … , 𝑢𝑘−1} are all nonzero and pairwise 
orthogonal, and that 𝑠𝑝𝑎𝑛 𝑣0, . . , 𝑣𝑘−1 = 𝑠𝑝𝑎𝑛 (𝑢0, . . , 𝑢𝑘−1)

▪ Independently devised the specification ▪ Stronger than what is in the textbook▪ Main helper lemma to prove CGS
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Equivalence Proof Sketch (what is next?)

Correctness of CGS
▪ Done

Correctness of MGS
▪ Reuse CGS helper lemmas  
▪ An Additional lemma proved on pen and paper: 
For all 0 ≤ 𝑘 < 𝑚, if 𝑣𝑖

𝑖  ⊥ 𝑣𝑗
𝑗  for i, 𝑗 =  0, . . , 𝑘 − 1, then 

𝑣𝑘
ℎ = 𝑣𝑘 − σ𝑖=𝑜

ℎ−1 𝑝𝑟𝑜𝑗𝑣𝑖
𝑖𝑣𝑘  for 0 ≤ ℎ ≤ 𝑘. 

▪ Reuse Orthogonal Decomposition Theorem

induct on 
the number 
of input 
vectors

Exact 
equivalence 

in reals
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▪ Current work could be implemented into Mathcomp

▪ Suggestion: Could add our work to the Vector library as we have similar definition on 
vectors.

▪ Future applications and use case of our library:
— Ordinary Differential Equation

• People can use our library to mechanize ODE solving techniques that involves linear algebra
— QR Decomposition

• To solve linear least squares problem
— …Theorems that involves linear algebra

Future Work (Mathcomp)
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Future Work

Reasoning about floating-point programs
- Adapts the equality constrains of our lemmas to symbolic bounds.

Reasoning about low-level HPC programs
- Extends a separation logic with support for floating-point.

Modular equivalence framework for floating-point programs
- Significantly automate the currently very tedious and error-prone method of manually 

constructing FP error bounds.
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Conclusion and Personal Takeaway

▪ We extended the Mathcomp library 
to include basic linear algebra 
theorems
— Basis Theorem, dot product properties, 

definition of projections...

▪ The linear algebra library is used to 
prove the properties of GS
— Finished the proof for CGS using this library

▪ The library can be extended to 
floating point reasoning and error 
analysis.

▪ Mechanize math is easy hard

▪ Formalizing a software is challenging 
because there are missing pieces → 
have to develop a library 

▪ Lack of automation in theorem 
proving → need for better automation

▪ Grateful to have Flocq and Mathcomp 
to reason about floats
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GS has different versions, CGS and MGS
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Key results – Theorem 1

Our work

mathcomp

Our work

Our work

Our work

mathcomp

Our work
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MGS
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