
LLNL-PRES-872110
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence L ivermore Nationa l Secur ity, LLC

Towards Verified Linear Algebra
Programs Through Equivalence

Yihan (Yuki) Yang, Mohit Tekriwal, John Sarracino, Matthew Sottile, Ignacio Laguna

Jan 25, 2025

2
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

▪ Scientific computing is rapidly evolving. Some evolving trends
— Data compression FP formats to overcome cost of data movement in FP

arithmetic
— Reduced & mixed precision or other exotic precision formats in next generation

hardware & accelerators
— Parallelization on GPUs, FPGAs and shift towards heterogeneous architectures

▪ Need for next generation of numerical algorithms that takes into account all these
aspects in order to meet the demands of applications on the evolving hardware

▪ For the case when these next gen algorithms are variants of existing algorithms
— How do we verify the correctness of their implementation for safe deployment?

Motivation

3
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

▪ A solution: Prove the equivalence between the new variant and its classical
counterpart

▪ Classical counterpart extensively studied in numerical analysis literature and serve as
a ground truth for correctness of new variants

▪ Recent work: Equivalence between dense matrix-vector product & sparse matrix-
vector product with varying sparse matrix representations (LGTM framework
@PLDI’24 : Gladshtein et al.)

▪ In this work, we prove equivalence between variants of a fundamental
orthogonalization algorithm, Gram-Schmidt: Classical Gram-Schmidt and Modified
Gram-Schmidt (more stable numerically)

Program equivalence

4
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

▪ Gram-Schmidt is an orthogonalization algorithm: computes an orthogonal set of
vectors

▪ Applications of orthogonalization algorithm
— Machine learning

• feature engineering through techniques like Principal component analysis
• Optimization and regularization
• Data compression, image processing and collaborative filtering through

techniques like Singular Value Decomposition
— Cryptography: Lattice reduction techniques to optimize the basis of a lattice for

better efficiency and security
— Signal processing: Noise reduction and multi-channel communication
— …

Gram-Schmidt (GS) algorithm

5
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Research contribution

We extended the Mathcomp library in Coq to include basic linear algebra theorems
- Basis Theorem, dot product properties, definition of projections...

The linear algebra library is used to prove the properties of GS
- Finished the proof for CGS using this library

The library can be extended to floating point reasoning and error analysis.

Mathcomp: Assia Mahboubi, & Enrico Tassi. (2022). Mathematical Components (1.0.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7118596

6
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

What is Gram-Schmidt Algorithm?

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.

7
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

What is Gram-Schmidt Algorithm?

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.

8
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

GS has Different Versions, CGS and MGS

math

CGS

- output vectors not perfectly
orthogonal in floating points

- large rounding error
- Numerically unstable

9
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

GS has Different Versions, CGS and MGS

math math

CGS MGS

- output vectors not perfectly
orthogonal in floating points

- large rounding error
- Numerically unstable

- exact equivalence to CGS in
real numbers

- small rounding error
- Numerically stable

10
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

GS has Different Versions, CGS and MGS

math math

CGS MGS

11
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Loss of Orthogonality in CGS
▪ CGS loses orthogonality after a couple iteration (in floating points)

https://www.cis.upenn.edu/~cis6100/Gram-Schmidt-Bjorck.pdf

k: dimension

𝑄𝐶: orthogonal basis
using CGS 𝑄𝑀: orthogonal basis

using MGS

The error of CGS
quickly diverges
away from 0

𝜅: condition number:
sensitivity of the output
relative to errors in the input

12
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Goal
▪ Prove CGS and MGS with the goal of proving stability and convergence
▪ Proving equivalence (both in reals and in floats) between different

variants of linear algebra algorithms.
▪ Prove actual programs → need computable definition

However...
▪ Isabelle/HOL

- Computable definition
- Target only CGS, did not include numerical stability
- Only proved high level mathematical properties

▪ LEAN
- Use a non-computable definition of CGS

 - No MGS, no numerical stability

Our work provides formalization keeping in mind the numerical properties such as
stability, numerical convergence, and floats in the long run.

13
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

GS Specification

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.

14
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

GS Specification

projections, dot product..

Input: a finite, linearly independent set of vectors 𝑆 = {𝑣1, … , 𝑣𝑘} in ℝ𝑛
for 𝑘 ≤ 𝑛

Output: an orthogonal set 𝑆′ = {𝑢1, … , 𝑢𝑘} that spans the same 𝑘-
dimensional subspace of ℝ𝑛 as 𝑆.

15
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

What is Mathcomp Missing? *Vector and Matrix are libraries in Mathcomp

Definitions Location in Mathcomp

vector Defined in Vector, implicit in Matrix

linear independence Defined in Vector as "free"

vector space/span Defined in Vector

projection Defined in Vector, but very limited and lack algebraic properties

Definitions Location in Mathcomp

dot product no explicit definition or properties

orthogonality Not defined

Orthogonal Decomposition Theorem Not defined

Basis Theorem Not defined

Mathcomp
have a lot of
low-level
definitions

Missing high
level linear
algebra
theorems

16
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

We used Mathcomp to created a library that can help us prove
the GS theorem.

Definition r_vector := 'cV[R]_n.+1.

Definition vec_dot (v1 v2 : r_vector) : R :=
\sum_(i < n.+1) (v1 i 0) * (v2 i 0).

Definition projection (u v : r_vector) : r_vector :=
let uv := vec_dot u v in
let uu := norm u in
(uv/uu) *: u.

Definition ortho (a b : r_vector) := vec_dot a b == 0.

...

Key Takeaway:
- Add definitions and properties towards building a comprehensive

linear algebra library

17
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Dependency Graph 1

We mechanized fundamental linear algebra theorems, including the Basis Theorem, the
Orthogonal Decomposition Theorem (projs_ortho), and basic properties of vectors.

18
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Key Results – Theorem 1

Key Takeaway:
- Tweaked the specification a little to match its use case.
- When 𝑘 = 𝑚, this is the Orthogonal Decomposition Theorem.
- The proof requires both Mathcomp and our library.

19
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Dependency Graph 2

We used the linear algebra library to prove the correctness of CGS.

20
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Key Results – Theorem 2

▪ Independently devised the specification ▪ Stronger than what is in the textbook▪ Main helper lemma to prove CGS

21
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Key Results – Theorem 2

▪ Independently devised the specification ▪ Stronger than what is in the textbook▪ Main helper lemma to prove CGS

IH: For a certain 𝑘 ≤ 𝑚, {𝑢0, … , 𝑢𝑘−1} are all nonzero and pairwise
orthogonal, and that 𝑠𝑝𝑎𝑛 𝑣0, . . , 𝑣𝑘−1 = 𝑠𝑝𝑎𝑛 (𝑢0, . . , 𝑢𝑘−1)

22
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Key Results – Theorem 2

IH:

𝑢𝑘 not zero 𝑢𝑘 orthogonal to 𝑢0...𝑢𝑘−1 𝑆𝑝𝑎𝑛(𝑣0, . . , 𝑣𝑘)
= 𝑠𝑝𝑎𝑛(𝑢0, . . , 𝑢𝑘)

not in
𝑠𝑝𝑎𝑛(𝑣0, . . , 𝑣𝑘−1)

in
𝑠𝑝𝑎𝑛(𝑣0, . . , 𝑣𝑘−1)

use Orthogonal
Decomposition
Theorem

use Basis Theorem

For a certain 𝑘 ≤ 𝑚, {𝑢0, … , 𝑢𝑘−1} are all nonzero and pairwise
orthogonal, and that 𝑠𝑝𝑎𝑛 𝑣0, . . , 𝑣𝑘−1 = 𝑠𝑝𝑎𝑛 (𝑢0, . . , 𝑢𝑘−1)

▪ Independently devised the specification ▪ Stronger than what is in the textbook▪ Main helper lemma to prove CGS

23
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Equivalence Proof Sketch (what is next?)

Correctness of CGS
▪ Done

Correctness of MGS
▪ Reuse CGS helper lemmas
▪ An Additional lemma proved on pen and paper:
For all 0 ≤ 𝑘 < 𝑚, if 𝑣𝑖

𝑖 ⊥ 𝑣𝑗
𝑗 for i, 𝑗 = 0, . . , 𝑘 − 1, then

𝑣𝑘
ℎ = 𝑣𝑘 − σ𝑖=𝑜

ℎ−1 𝑝𝑟𝑜𝑗𝑣𝑖
𝑖𝑣𝑘 for 0 ≤ ℎ ≤ 𝑘.

▪ Reuse Orthogonal Decomposition Theorem

induct on
the number
of input
vectors

Exact
equivalence

in reals

24
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

▪ Current work could be implemented into Mathcomp

▪ Suggestion: Could add our work to the Vector library as we have similar definition on
vectors.

▪ Future applications and use case of our library:
— Ordinary Differential Equation

• People can use our library to mechanize ODE solving techniques that involves linear algebra
— QR Decomposition

• To solve linear least squares problem
— …Theorems that involves linear algebra

Future Work (Mathcomp)

25
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Future Work

Reasoning about floating-point programs
- Adapts the equality constrains of our lemmas to symbolic bounds.

Reasoning about low-level HPC programs
- Extends a separation logic with support for floating-point.

Modular equivalence framework for floating-point programs
- Significantly automate the currently very tedious and error-prone method of manually

constructing FP error bounds.

26
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Conclusion and Personal Takeaway

▪ We extended the Mathcomp library
to include basic linear algebra
theorems
— Basis Theorem, dot product properties,

definition of projections...

▪ The linear algebra library is used to
prove the properties of GS
— Finished the proof for CGS using this library

▪ The library can be extended to
floating point reasoning and error
analysis.

▪ Mechanize math is easy hard

▪ Formalizing a software is challenging
because there are missing pieces →
have to develop a library

▪ Lack of automation in theorem
proving → need for better automation

▪ Grateful to have Flocq and Mathcomp
to reason about floats

27
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

GS has different versions, CGS and MGS

28
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

Key results – Theorem 1

Our work

mathcomp

Our work

Our work

Our work

mathcomp

Our work

29
Towards_Verified_Linear_Algebra_Programs_Through_Equivalence.ppt – Yang, Tekriwal, Sarracino, Sottile, Laguna – CoqPL2025 – Jan 25, 2025

MGS

	Slide 1: Towards Verified Linear Algebra Programs Through Equivalence
	Slide 2: Motivation
	Slide 3: Program equivalence
	Slide 4: Gram-Schmidt (GS) algorithm
	Slide 5: Research contribution
	Slide 6: What is Gram-Schmidt Algorithm?
	Slide 7: What is Gram-Schmidt Algorithm?
	Slide 8: GS has Different Versions, CGS and MGS
	Slide 9: GS has Different Versions, CGS and MGS
	Slide 10: GS has Different Versions, CGS and MGS
	Slide 11: Loss of Orthogonality in CGS
	Slide 12: Goal
	Slide 13: GS Specification
	Slide 14: GS Specification
	Slide 15: What is Mathcomp Missing?
	Slide 16: We used Mathcomp to created a library that can help us prove the GS theorem.
	Slide 17: Dependency Graph 1
	Slide 18: Key Results – Theorem 1
	Slide 19: Dependency Graph 2
	Slide 20: Key Results – Theorem 2
	Slide 21: Key Results – Theorem 2
	Slide 22: Key Results – Theorem 2
	Slide 23: Equivalence Proof Sketch (what is next?)
	Slide 24: Future Work (Mathcomp)
	Slide 25: Future Work
	Slide 26: Conclusion and Personal Takeaway
	Slide 27: GS has different versions, CGS and MGS
	Slide 28: Key results – Theorem 1
	Slide 29: MGS

